Rexroth Bosch Group

### **RE 91172/02.12** Replaces: 11.10

1/28

# Fixed displacement motor Axial piston design A10FM / A10FE

### Data sheet

Series 52 Sizes 10 to 63 Nominal pressure 280 bar Maximum pressure 350 bar Open and closed circuit



A10FM 23...63



A10FE 10...45 (2-hole-flange) A10FE 11...18 (8-hole-flange)

| Contents                           |
|------------------------------------|
| Type code for standard program     |
| Technical data                     |
| Dimensions A10FM<br>sizes 23 to 63 |

| Dimensions A10FE<br>sizes 10 to 63 |  |
|------------------------------------|--|
| Flushing and boost pressure valve  |  |

Anti cavitation valve

- Speed sensor
- Installation instructions
- General instructions

## Features

2

4

8

14

24

24

25

26

28

- Fixed displacement motor in axial piston swashplate design for hydrostatic drives in open and closed circuit operation
- The output speed is proportional to the inlet flow
- The output torque increases with the pressure differential between the high and low pressure sides
- For use in mobile and industrial applications
- Long service life
- High permissible output speeds
- Well proven A10-rotary group technology
- High power to weight ratio compact design
- Plug-in version for space saving installation
  - Low noise level
  - Mechanical and hydraulic connections also acc. to SAE standards
  - Speed sensor optional
  - Integrated anti cavitation valve optional, i.e. for fan drives

# Ordering code for standard program

| A10            | FM                  |              | /            | 52          |           | _          | V              |            | C   | ;     |         |      |     |       |                 |
|----------------|---------------------|--------------|--------------|-------------|-----------|------------|----------------|------------|-----|-------|---------|------|-----|-------|-----------------|
| 01             | 02                  | 03           |              | 04          | 05        |            | 06             | 07         | 08  | 3     | 09      | )    | 10  |       | 11              |
|                |                     |              |              |             |           |            |                |            |     |       |         |      |     |       |                 |
|                | al piston un        |              | -            |             |           |            |                |            |     | -     |         |      |     |       |                 |
| 01 Sw          | ashplate de         | sign, fixed  | displacem    | nent, nomi  | nal press | ure 280 ba | ar, maximur    | n pressure | 350 | bar   |         |      |     |       | A10F            |
| Оре            | erating mod         | е            |              |             |           |            |                |            |     |       |         |      |     |       |                 |
| 02 Mot         | tor, open an        | d closed c   | circuit      |             |           |            |                |            |     |       |         |      |     |       | М               |
| Size           | e (NG)              |              |              |             |           |            |                |            |     |       |         |      |     |       |                 |
|                | oretical disp       | placement    | see page     | 6           |           |            |                | 018        | 023 | 028   | 037     | 045  | 058 | 063   |                 |
| Sari           | iaa                 |              |              |             |           |            |                | •          |     |       |         |      |     |       | I               |
| Seri<br>04 Ser | ries 5, Index       | 2            |              |             |           |            |                |            |     |       |         |      |     |       | 52              |
|                |                     |              |              |             |           |            |                |            |     |       |         |      |     |       |                 |
|                | ection of rot       |              |              |             |           | ماموامینام |                |            |     |       |         |      |     |       | <b>D</b> 1)     |
| 05             | wea on arive        | e snan       |              |             |           |            | e<br>clockwise |            |     |       |         |      |     |       | R <sup>1)</sup> |
| 05             |                     |              |              |             |           | bidirectic |                |            |     |       |         |      |     |       | /<br>           |
|                |                     |              |              |             |           | Dianeotic  |                |            |     |       |         |      |     |       | vv              |
| Sea            | -                   |              |              |             |           |            |                |            |     |       |         |      |     |       |                 |
| 06   FKI       | M (Fluoro-ru        | bber)        |              |             |           |            |                |            |     |       |         |      |     |       | V               |
| Driv           | e shaft             |              |              |             |           |            |                | 018        | 023 | 028   | 037     | 045  | 058 | 063   |                 |
|                | ined shaft to       |              |              |             |           |            |                | 0          | •   | •     | •       | •    | •   | •     | R               |
| · ·            | ined shaft to       |              |              |             |           |            |                |            | 0   | 0     | •       | •    | •   | •     | W               |
| Тар            | ered with w         | oodruff ke   | y and thre   | aded end    |           |            |                | 0          | •   | •     | •       | •    | •   | •     | С               |
| Mou            | inting flange       | 9            |              |             |           |            |                | 018        | 023 | 028   | 037     | 045  | 058 | 063   |                 |
| 08 SAI         | E 2-hole            |              |              |             |           |            |                | 0          |     |       |         |      |     |       | С               |
| Port           | s for service       | lines        |              |             |           |            |                | 018        | 023 | 028   | 037     | 045  | 058 | 063   |                 |
| SA             | E-flange por        |              | 3 on side,   | same side   | Mountin   | g bolts me | tric           | -          | •   | •     | •       | •    | •   | •     | 10N00           |
| 09             | eaded ports         |              |              |             |           | 0          |                | 0          | •   | •     | •       | •    | •   | •     | 16N00           |
| Vere           |                     |              |              |             |           |            |                | 010        | 000 |       | 007     | 0.45 | 050 |       |                 |
| Ven            | tile<br>hout valves |              |              |             |           |            |                | 018        | 023 | 028   | 037     | 045  | 058 | 063   | 0               |
|                | h integrated        | l flushing v | valve        |             |           |            |                | -          |     |       |         | •    |     |       | 7               |
|                | h integrated        |              |              | )           |           |            |                | 0          | •   | •     | •       | •    | •   | •     | 2               |
|                |                     |              |              |             |           |            |                |            |     | • • • | • • • • |      |     | • • • |                 |
|                | ed sensor           | sensor       |              |             |           |            |                |            | 023 | 028   | 037     | 045  | -   | 063   |                 |
| 11             | pared for sp        |              | or (for indi | uctive one  | ad ecross | (D)        |                | 0          |     |       |         |      |     |       |                 |
| Fie            | pareu iur sp        |              |              | ictive spee |           |            |                | 0          |     |       |         |      | 0   | 0     | D               |

 $\bullet$  = available

O = on request - = not available

1) Only necessary in conjunction with valve configuration "2" (integrated anti cavitation valve)

# Ordering code for standard program

| A1     | 0F      | Е                                  |             | /           | 52          |             | -          | \ \    | V      |       |       |     | T   |     | Ţ   |     |     |                 |
|--------|---------|------------------------------------|-------------|-------------|-------------|-------------|------------|--------|--------|-------|-------|-----|-----|-----|-----|-----|-----|-----------------|
| 0      | 1       | 02                                 | 03          |             | 04          | 05          |            | (      | )6     | 0     | 7     | 08  | 3   | 09  | )   | 10  |     | 11              |
|        |         |                                    |             |             |             |             |            |        |        |       |       |     |     |     |     |     |     |                 |
|        |         | piston un                          |             |             |             |             | 0001       |        |        |       |       | 050 |     |     |     |     |     |                 |
| 01     | Swas    | hplate de                          | sign, fixed | displacen   | nent, nom   | inal pressi | ure 280 ba | ar, ma | Iximur | n pre | ssure | 350 | bar |     |     |     |     | A10F            |
|        |         | iting mod                          |             |             |             |             |            |        |        |       |       |     |     |     |     |     |     |                 |
| 02     | Moto    | r, open an                         | d closed o  | circuit     |             |             |            |        |        |       |       |     |     |     |     |     |     | E               |
| s      | Size (  | NG)                                |             |             |             |             |            |        |        |       |       |     |     |     |     |     |     |                 |
| 03 7   | Theor   | etical dis                         | olacement   | see page    | 6           |             | 010        | 011    | 014    | 016   | 018   | 023 | 028 | 037 | 045 | 058 | 063 | ]               |
| 9      | Series  | -                                  |             |             |             |             |            |        |        |       |       |     |     |     |     |     |     | •               |
| -      |         | s 5, Index                         | 2           |             |             |             |            |        |        |       |       |     |     |     |     |     |     | 52              |
|        |         |                                    |             |             |             |             |            |        |        |       |       |     |     |     |     |     |     |                 |
|        |         | t <b>ion of ro</b> t<br>ed on driv |             |             |             | clockw      |            | _      |        | -     |       |     |     |     |     |     |     |                 |
| 05     |         |                                    |             |             |             |             |            |        |        |       |       |     |     |     |     |     |     | R <sup>1)</sup> |
| 05     |         |                                    |             |             |             | bidirect    |            |        |        |       |       |     |     |     |     |     |     | <br>            |
|        |         |                                    |             |             |             | 2101100     |            |        |        |       |       |     |     |     |     |     |     | L               |
|        | Seals   |                                    |             |             |             |             |            |        |        |       |       |     |     |     |     |     |     | <u> </u>        |
| 06   H | FKM     | (Fluoro-ru                         | bber)       |             |             |             |            |        |        |       |       |     |     |     |     |     |     | V               |
| D      | Drive   | shaft                              |             |             |             |             | 010        | 011    | 014    | 016   | 018   | 023 | 028 | 037 | 045 | 058 | 063 |                 |
|        |         |                                    |             | 9-1 (SAE    |             |             | 0          | •      | •      | •     | •     | •   | •   | •   | •   | •   | •   | R               |
| - H    | •       |                                    |             | 9-1 (SAE    |             |             | -          | -      | -      | -     | -     | 0   | 0   | •   | •   | •   | •   | W               |
| 1      | Taper   | ed with w                          | oodruff ke  | ey and thre | aded end    |             | •          | •      |        | •     | •     | •   | •   | •   | •   | •   | •   | С               |
| N      | lount   | ing flange                         | 9           |             |             |             | 010        | 011    | 014    | 016   | 018   | 023 | 028 | 037 | 045 | 058 | 063 |                 |
|        |         | 2-hole                             |             |             |             |             | •          | •      |        | •     |       | -   | -   | -   | -   | -   | -   | C <sup>2)</sup> |
| 08     | Spec    | ial 2-hole                         |             |             |             |             | -          | -      | -      | -     | -     |     |     |     |     |     |     | F               |
| S      | Spec    | ial 8-hole                         |             |             |             |             | -          | •      | •      | •     | •     | -   | -   | -   | -   | -   | -   | н               |
| Р      | orts    | for service                        | e lines     |             |             |             | 010        | 011    | 014    | 016   | 018   | 023 | 028 | 037 | 045 | 058 | 063 |                 |
|        |         |                                    |             | B, on side, | same sid    | е           |            |        |        |       |       |     |     |     |     |     |     | 10100           |
| 09 r   | moun    | ting bolts                         | metric      |             |             |             |            | _      | -      | _     | -     | •   | •   | •   | -   |     | •   | 10N00           |
|        | Threa   | ded ports                          | A and B,    | metric, on  | ı side, san | ne side     | •          | •      | •      | •     | •     | •   | •   | •   | •   | •   | •   | 16N00           |
|        |         |                                    |             |             |             |             |            |        |        |       |       |     |     |     |     |     |     |                 |
|        | alves   |                                    |             |             |             |             | 010        | 011    | 014    | 016   | 018   | 023 | 028 | 037 | 045 | 058 | 063 |                 |
|        |         | out valves                         |             |             |             |             | 0          | •      | 0      | •     | •     | •   | •   | •   | •   | •   | •   | 0               |
|        |         | -                                  | l flushing  |             |             |             |            | -      | -      | -     | -     | •   | •   | •   | •   | •   | •   | 7               |
| \      | With    | integrated                         | anti cavit  | ation valve | 9           |             | •          | •      |        | •     | •     | •   | •   | •   | •   |     | •   | 2               |
| s      | Speed   | d sensor                           |             |             |             |             | 010        | 011    | 014    | 016   | 018   | 023 | 028 | 037 | 045 | 058 | 063 |                 |
| ١      | Withc   | out speed                          | sensor      |             |             |             | •          |        |        |       | •     |     |     | •   |     |     |     |                 |
|        |         |                                    | beed sens   |             |             |             | _          | _      | _      | _     | 0     |     |     | •   | •   | 0   | 0   | D               |
| (      | (tor in | ductive s                          | peed sens   | sor ID)     |             |             |            |        |        |       |       |     |     |     |     |     |     |                 |

• = available O = on request

– = not available

1) Only necessary in conjunction with valve configuration "2" (integrated anti cavitation valve)

2) R-shaft with C-flange on sizes 10 to 18 in preparation

### Fluids

Prior to project design, please see our technical data sheets RE 90220 (mineral oil) and RE 90221 (environmentally acceptable fluis) for detailed information on fluids and operating conditions.

For operation on environmentally acceptable fluids please consult us (when ordering, please state in clear text the fluid to be used).

#### Operating viscosity range

To achieve optimum values for efficiency and service life we recommend an operation viscosity (at operating temperature) within the range,

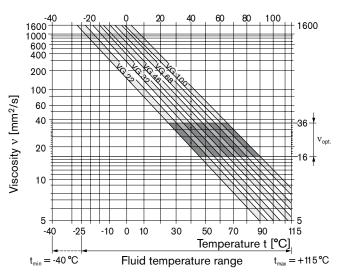
v<sub>opt</sub> = opt. operating viscosity 16 ... 36 mm<sup>2</sup>/s

referred to the tank temperature (open circuit).

#### Limit of viscosity range

For critical operation conditions the following values apply:

$$\begin{split} \nu_{min} = & 5 \ mm^2/s \ (closed \ circuit) \\ & 10 \ mm^2/s \ (open \ circuit) \\ & for \ short \ periods \ (t \leq 1 \ min) \\ & at \ a \ max. \ perm. \ temperature \ of \ 115 \ ^{\circ}C. \end{split}$$


Please note that the max. leakage fluid temperature of 115 °C is also not exceeded in certain areas (for instance bearing area). The fluid temperature in the bearing area is approx. 5 K higher than the average leakage fluid temperature

$$\begin{split} \nu_{max} = & 1600 \text{ mm}^2\text{/s} \\ & \text{for short periods (t \leq 1 \text{ min})} \\ & \text{on cold start} \\ & (t_{min} = p \leq 30 \text{ bar, n} \leq 1000 \text{ min}^{-1}, -25 \text{ °C}). \end{split}$$

At temperatures between -40 °C and -25 °C special measures are required, please consult us for further information.

For detailed information on operation with low temperatures see data sheet RE 90300-03-B.

#### Selection diagram



### Notes on the selection of the hydraulic fluid

In order to select the correct fluid, it is necessary to know the operating temperature in the tank (open circuit) in relation to the ambient temperature.

The fluid should be selected so that witin the operating temperature range, the viscosity lies within the optimum range ( $v_{opt}$ ), see shaded section of the selection diagram. We recommend to select the higher viscosity grade in each case.

Example: at an ambient temperature of X °C the operating temperature in the tank is 60 °C. In the optimum viscosity range ( $v_{opt}$ ; shaded area) this corresponds to viscosity grades VG 46 resp. VG 68; VG 68 should be selected.

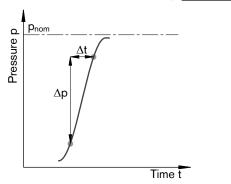
**Important:** The leakage oil (case drain oil) temperature is influenced by pressure and input speed and is always higher than the tank temperature. However, at no point of the component may the temperature exceed 115 °C.

If it is not possible to comply with the above conditions because of extreme operating parameters please consult us.

## Filtration of the hydraulic fluid

Filtration improves the cleanliness level of the hydraulic fluid, which, in turn, increases the service life of the axial piston unit.

To ensure the functional reliability of the axial piston unit, a gravimetric evaluation is necessary for the hydraulic fluid to determine the amount of contamination by solid matter and to determine the cleanliness level according to ISO 4406. A cleanliness level of at least 20/18/15 to ISO 4406 is to be maintained.


If above requirements cannot be maintained please consult us.

#### **Operating pressure range**

Pressure at service line port (pressure port) A or B

| Nominal pressure p <sub>nom</sub> | 280 bar absolute           |
|-----------------------------------|----------------------------|
| Maximum pressure p <sub>max</sub> | 350 bar absolute           |
| Single operating period           | 2,5 ms                     |
| Total operating period            | 300 h                      |
| Minimum pressure (high pressure   | side) 10 bar <sup>2)</sup> |

Rate of pressure change R<sub>A max</sub> \_\_\_\_\_ 16000 bar/s



#### **Outlet pressure**

| at n <sub>max</sub>                                             |        |
|-----------------------------------------------------------------|--------|
| Minimum pressure at low pressure side $p_{\mbox{\tiny absmax}}$ | 18 bar |

#### Case drain pressure

Maximum permissible case drain pressure (at port L,  $L_1$ ):

| Pmax abs motor operation in open circuit               | _4 bar <sub>abs</sub> |
|--------------------------------------------------------|-----------------------|
| P <sub>max abs</sub> motor operation in closed circuit | 4 bar <sub>abs</sub>  |
| Pmax abs pump/motor operation in open circuit          | 2 bar <sub>abs</sub>  |

#### **Direction of flow**

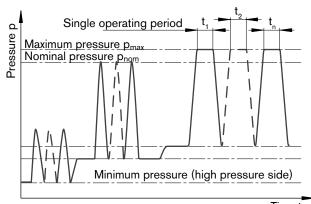
| viewed on drive shaft |                            |
|-----------------------|----------------------------|
| clockwise rotation    | counter clockwise rotation |
| A to B                | B to A                     |

#### Definitions

#### Nominal pressure pnom

The nominal pressure corresponds to the maximum design pressure.

#### Maximum pressure pmax


The maximum pressure corresponds to the maximum operating pressure within the single operating period. The sum of the single operating periods must not exceed the total operating period.

#### Minimum pressure (high-pressure side)

Minimum pressure at the high pressure side (A or B) which is required in order to prevent damage to the axial piston unit.

### Rate of pressure change R<sub>A</sub>

Maximum permissible rate of pressure rise and pressure reduction during a pressure change, over the entire pressure range.



Time t

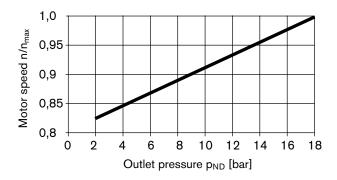
Total operating period =  $t_1 + t_2 + ... + t_n$ 

<sup>1)</sup> Other values on request

<sup>2)</sup> Lower pressures time dependent, please consult us.

Table of values (theoretical values, without efficiency and tolerances: valuea rounded)

| Size                                      |                              | NG                 |                    | 010    | 011     | 014     | 016     | 018     | 023    |
|-------------------------------------------|------------------------------|--------------------|--------------------|--------|---------|---------|---------|---------|--------|
|                                           |                              | -                  | cm <sup>3</sup>    | 10.6   | 11.5    | 14.1    | 16.1    | 18      | 23.5   |
| Displacement                              |                              | V <sub>g max</sub> | Cme                | 10.6   | 11.5    | 14.1    | 10.1    | 18      | 23.5   |
| Speed <sup>1)</sup>                       |                              |                    |                    |        |         |         |         |         |        |
| at V <sub>g max</sub>                     |                              | n <sub>nom</sub>   | rpm                | 5000   | 4200    | 4200    | 4200    | 4200    | 4900   |
| Input flow                                |                              |                    |                    |        |         |         |         |         |        |
| at n <sub>nom</sub>                       |                              | $q_{v max}$        | L/min              | 53     | 48      | 59      | 68      | 76      | 115    |
| Power                                     |                              |                    |                    |        |         |         |         |         |        |
| at $n_{nom}$ , $\Delta p = 280$ bar $P_n$ |                              |                    | kW                 | 24.7   | 22.5    | 27.6    | 31.6    | 35.3    | 53.6   |
| Actual starting torque                    |                              |                    |                    |        |         |         |         |         |        |
| at n= 0 rpm, $\Delta p = 280$             | bar                          |                    | Nm                 | 37.5   | 30      | 45      | 53      | 67.5    | 75     |
| Torque                                    |                              |                    |                    |        |         |         |         |         |        |
| at V <sub>g max</sub>                     | $\Delta p = 280 \text{ bar}$ | T <sub>max</sub>   | Nm                 | 47     | 51      | 63      | 72      | 80      | 105    |
| Torsional stiffness                       | R                            | С                  | Nm/rad             | -      | -       | -       | -       | 14835   | 28478  |
| Drive shaft                               | W                            | С                  | Nm/rad             | _      | -       | _       | _       | _       | _      |
|                                           | С                            | С                  | Nm/rad             | 15084  | 18662   | 18662   | 18662   | 18662   | 30017  |
| Moment of inertia rotary g                | group                        | J <sub>TW</sub>    | kgm <sup>2</sup>   | 0.0006 | 0.00093 | 0.00093 | 0.00093 | 0.00093 | 0.0017 |
| Maximum angular acceler                   | ration                       | α                  | rad/s <sup>2</sup> | 8000   | 6800    | 6800    | 6800    | 6800    | 5500   |
| Case volume                               |                              | V                  | L                  | 0.1    | 0.15    | 0.15    | 0.15    | 0.15    | 0.6    |
| Weight approx.                            |                              | m                  | kg                 | 5      | 6.5     | 6.5     | 6.5     | 6.5     | 12     |


| Size                                       |                              | NG                 |                    | 028    | 037    | 045    | 058    | 063    |
|--------------------------------------------|------------------------------|--------------------|--------------------|--------|--------|--------|--------|--------|
| Displacement                               |                              | V <sub>g max</sub> | cm <sup>3</sup>    | 28.5   | 36.7   | 44.5   | 58     | 63.1   |
| Speed <sup>1)</sup>                        |                              |                    |                    |        |        |        |        |        |
| at V <sub>g max</sub>                      |                              | n <sub>nom</sub>   | rpm                | 4700   | 4200   | 4000   | 3600   | 3400   |
| Input flow                                 |                              |                    |                    |        |        |        |        |        |
| at n <sub>nom</sub>                        |                              | $q_{v max}$        | L/min              | 134    | 154    | 178    | 209    | 215    |
| Power                                      |                              |                    |                    |        |        |        |        |        |
| at $n_{nom}$ , $\Delta p = 280$ k          | P <sub>max</sub>             | kW                 | 62.5               | 71.8   | 83.1   | 97.4   | 100.1  |        |
| Actual starting torque                     | 9                            |                    |                    |        |        |        |        |        |
| at n= 0 min <sup>-1</sup> , $\Delta p = 2$ | 280 bar                      |                    | Nm                 | 105    | 125    | 170    | 205    | 230    |
| Torque                                     |                              |                    |                    |        |        |        |        |        |
| at V <sub>g max</sub>                      | $\Delta p = 280 \text{ bar}$ | T <sub>max</sub>   | Nm                 | 127    | 163    | 198    | 258    | 281    |
| Torsional stiffness                        | R                            | С                  | Nm/rad             | 28478  | 46859  | 46859  | 80590  | 80590  |
| Drive shaft                                | W                            | С                  | Nm/rad             | -      | 38489  | 38489  | 60907  | 60907  |
|                                            | С                            | С                  | Nm/rad             | 30017  | 46546  | 46546  | 87667  | 87667  |
| Moment of inertia rotary                   | / group                      | J <sub>TW</sub>    | kgm <sup>2</sup>   | 0.0017 | 0.0033 | 0.0033 | 0.0056 | 0.0056 |
| Maximum angular accel                      | eration                      | α                  | rad/s <sup>2</sup> | 5500   | 4000   | 4000   | 3300   | 3300   |
| Case volume                                |                              | V                  | L                  | 0.6    | 0.7    | 0.7    | 0.8    | 0.8    |
| Weight approx.                             |                              | m                  | kg                 | 12     | 17     | 17     | 22     | 22     |

<sup>1)</sup> for maximum speed an outlet pressure (in low pressure side) of 18 bar is required (see diagram on page 7)

## Note

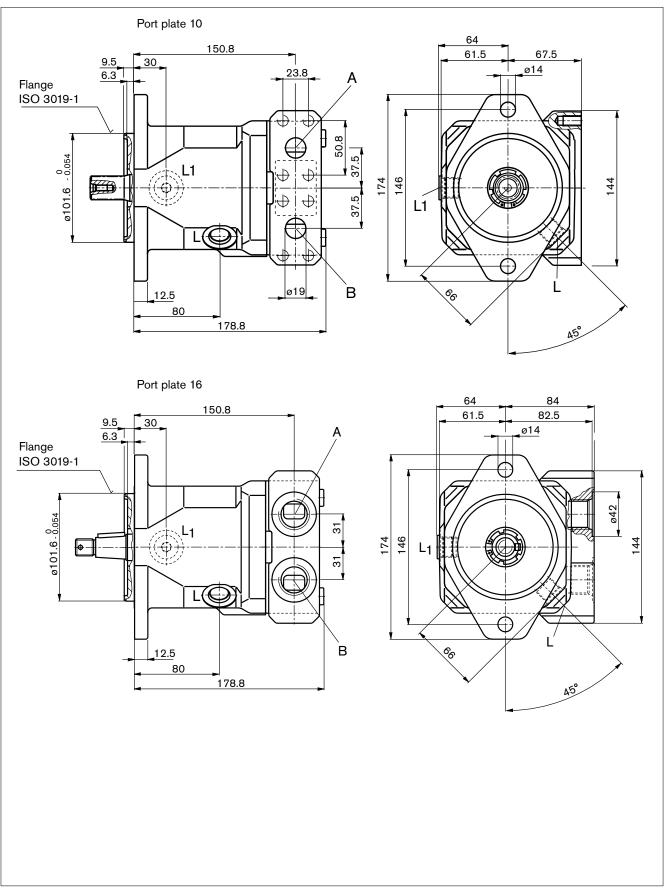
Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. We recommend testing the loads by means of experiment or calculation / simulation and comparison with the permissible values.

Permissible motor speed in relation to outlet pressure



### Determination of motor size (NG)

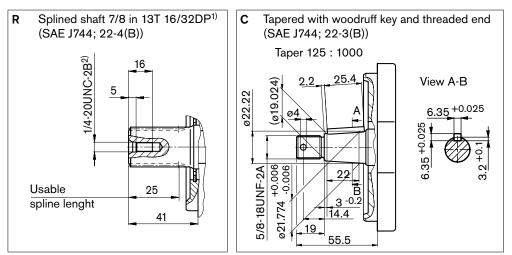
| Input flow | $q_v =$ | V <sub>g</sub> ∙ n                          | FL ( ) ]                                         |                    |                                                              |
|------------|---------|---------------------------------------------|--------------------------------------------------|--------------------|--------------------------------------------------------------|
|            |         | 1000 • η <sub>v</sub>                       | [L/min]                                          | $V_{g}$            | = Displacement per revolution in cm <sup>3</sup>             |
|            |         |                                             |                                                  | $\Delta p$         | <ul> <li>Differential pressure in bar</li> </ul>             |
| Torque     | T = 1   | ,59 • V <sub>g</sub> • Δp • η <sub>mh</sub> | [Nm]                                             | n                  | = Speed in rpm                                               |
|            | -       | 100                                         |                                                  | $\eta_{v}$         | <ul> <li>Volumetric efficiency</li> </ul>                    |
| or         | Τ =     | T <sub>k</sub> • Δp • η <sub>mh</sub>       |                                                  | $\eta_{\text{mh}}$ | = Mechanical-hydraulic efficiency                            |
| Power      | P =_    | 2 π • T • n                                 | $\frac{q_v \bullet \Delta p \bullet \eta_t}{kW}$ | $\eta_{t}$         | = Overall efficiency ( $\eta_t = \eta_v \bullet \eta_{mh}$ ) |
|            |         | 60000                                       | 600 [KVV]                                        | $T_{k}$            | = Torque constant                                            |
| Output     | n =     | q <sub>v</sub> • 1000 • η <sub>v</sub>      | [rpm]                                            |                    |                                                              |
| speed      | _       | Vg                                          | [,b.,]                                           |                    |                                                              |


## Permissible radial and axial forces on the drive shaft

| Size                        |                  |                | NG                    |   | 10   | 11   | 14  | 16  | 18  | 23   |
|-----------------------------|------------------|----------------|-----------------------|---|------|------|-----|-----|-----|------|
| Max. radial force<br>at X/2 | Drive shaft R; W | Drive shaft C  | F <sub>q max</sub>    | N | 250  | 350  | 350 | 350 | 350 | 1200 |
| Maximum axial force         | e                |                |                       |   |      |      |     |     |     |      |
| ±F                          |                  |                | ± F <sub>ax max</sub> | Ν | 400  | 700  | 700 | 700 | 700 | 1000 |
|                             |                  |                |                       |   |      |      |     |     |     |      |
| Size                        |                  |                | NG                    |   | 28   | 37   | 45  | 5   | 8   | 63   |
| Max. radial force<br>at X/2 | Drive shaft R; W | Drive shafte C | F <sub>q max</sub>    | N | 1200 | 1500 | 150 | 0 1 | 700 | 1700 |
|                             | X/2 X/2          | X/2 X/2        |                       |   |      |      |     |     |     |      |

# Dimensions A10FM size 23 - 28

Before finalising your design request a certified installation drawing. Dimensions in mm.


## A10FM 23-28/52W-VxCxxN000



## Dimensions A10FM size 23 - 28

Before finalising your design request a certified installation drawing. Maße in mm.

### **Drive shafts**



#### Ports

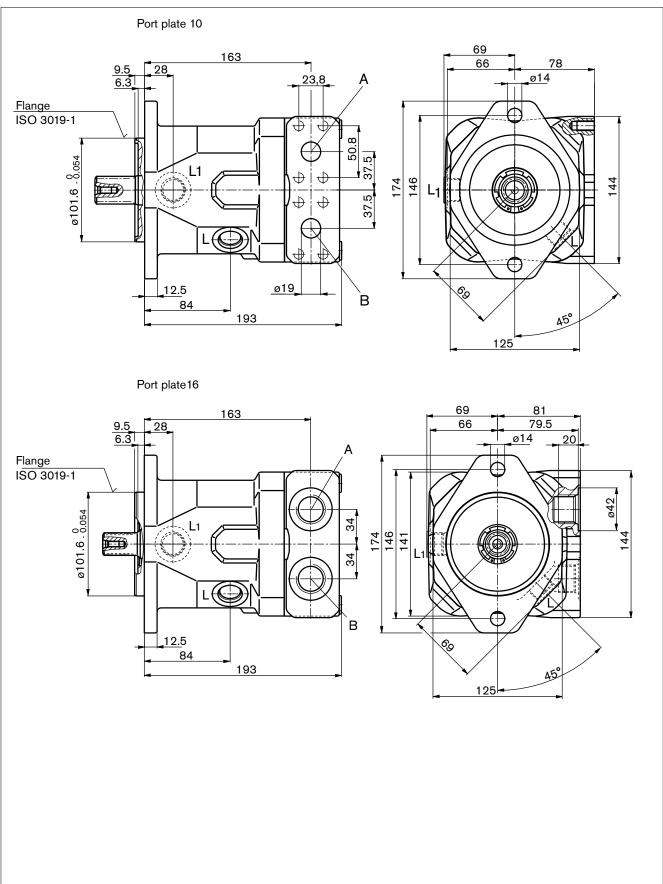
| Designation           | Port for                            | Standard                | Size <sup>2)</sup>     | Max. pressure<br>[bar] <sup>3)</sup> | State           |
|-----------------------|-------------------------------------|-------------------------|------------------------|--------------------------------------|-----------------|
| А, В                  | Service line (high pressure series) | SAE J518                | 3/4 in                 | 350                                  | 0               |
| Port plate 10         | Mounting bolts                      | DIN 13                  | M10 x 1.5; 17 deep     |                                      |                 |
| A, B<br>Port plate 16 | Service line                        | DIN 3852                | M27 x 2; 16 deep       | 350                                  | 0               |
| L                     | Case drain                          | ISO 11926 <sup>5)</sup> | 3/4-16 UNF-2B; 11 deep | 4                                    | O <sup>4)</sup> |
| L <sub>1</sub>        | Case drain                          | ISO 11926 <sup>5)</sup> | 3/4-16 UNF-2B; 11 deep | 4                                    | X <sup>4)</sup> |

<sup>1)</sup> ANSI B92.1a-1996, 30° pressure angle, flat base, flank centering, tolerance class 5

<sup>2)</sup> Observe the general instructions on page 28 for the maximum tightening torques.

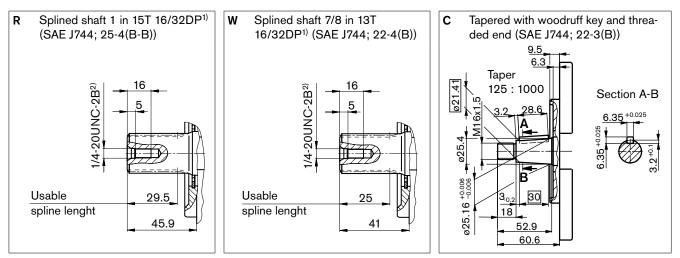
<sup>3)</sup> Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

<sup>4)</sup> Depending on the installation position, L or L<sub>1</sub> must be connected (see also page 26 - 27).


<sup>5)</sup> The counterbore can be deeper than stipulated in the standard.

O = Must be connected (plugged on delivery)

# Dimensions A10FM size 37 - 45


Before finalising your design request a certified installation drawing. Dimensions in mm.

## A10FM 37-45/52W-VxCxxN000



# Dimensions A10FM size 37 - 45

#### **Drive shafts**



#### Ports

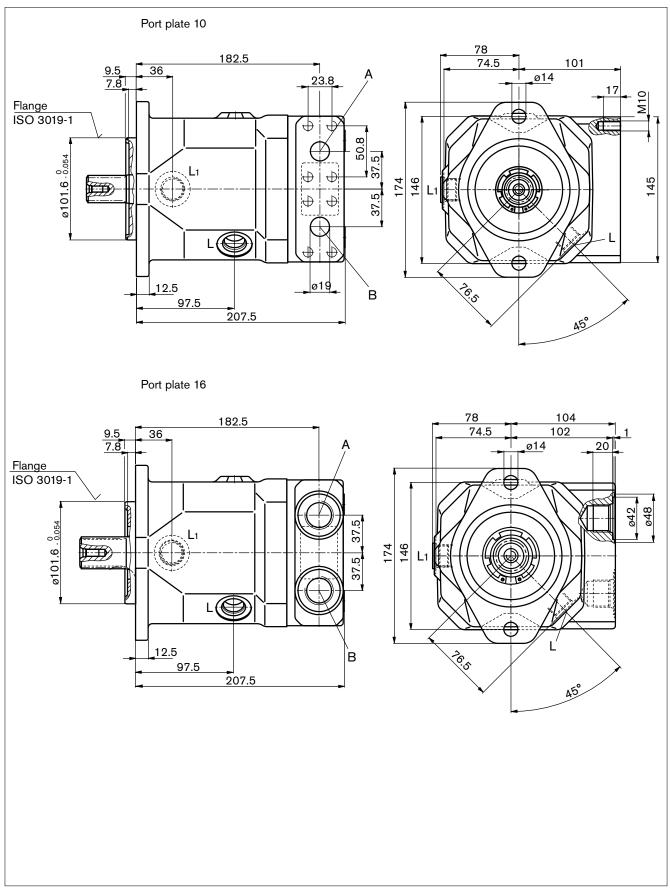
| Designation           | Port for                            | Standard                | Size <sup>2)</sup>     | Max. pressure<br>[bar] <sup>3)</sup> | State           |
|-----------------------|-------------------------------------|-------------------------|------------------------|--------------------------------------|-----------------|
| A, B                  | Service line (high pressure series) | SAE J518                | 3/4 in                 | 350                                  | 0               |
| Port plate 10         | Mounting bolts                      | DIN 13                  | M10 x 1.5; 17 deep     |                                      |                 |
| A, B<br>Port plate 16 | Service line                        | DIN 3852-1              | M27 x 2; 16 deep       | 350                                  | 0               |
| L                     | Case drain                          | ISO 11926 <sup>5)</sup> | 7/8-14 UNF-2B; 13 deep | 4                                    | O <sup>4)</sup> |
| L <sub>1</sub>        | Case drain                          | ISO 11926 <sup>5)</sup> | 7/8-14 UNF-2B; 13 deep | 4                                    | X <sup>4)</sup> |

<sup>1)</sup> ANSI B92.1a-1996, 30° pressure angle, flat base, flank centering, tolerance class 5

<sup>2)</sup> Observe the general instructions on page 28 for the maximum tightening torques.

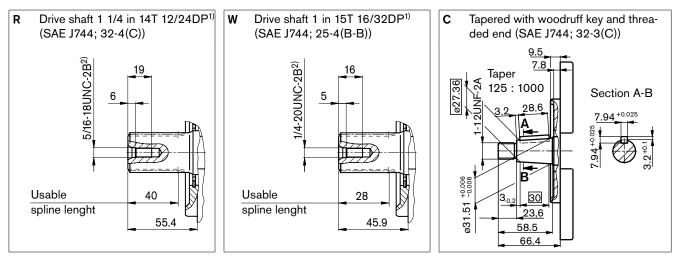
<sup>3)</sup> Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

<sup>4)</sup> Depending on the installation position, L or L<sub>1</sub> must be connected (see also page 26 - 27).


<sup>5)</sup> The counterbore can be deeper than stipulated in the standard.

O = Must be connected (plugged on delivery)

# Dimensions A10FM size 58 - 63


Before finalising your design request a certified installation drawing. Dimensions in mm.

### A10FM 58-63/52W-VxCxxN000



## Dimensions A10FM size 58 - 63

#### **Drive shafts**



#### Ports

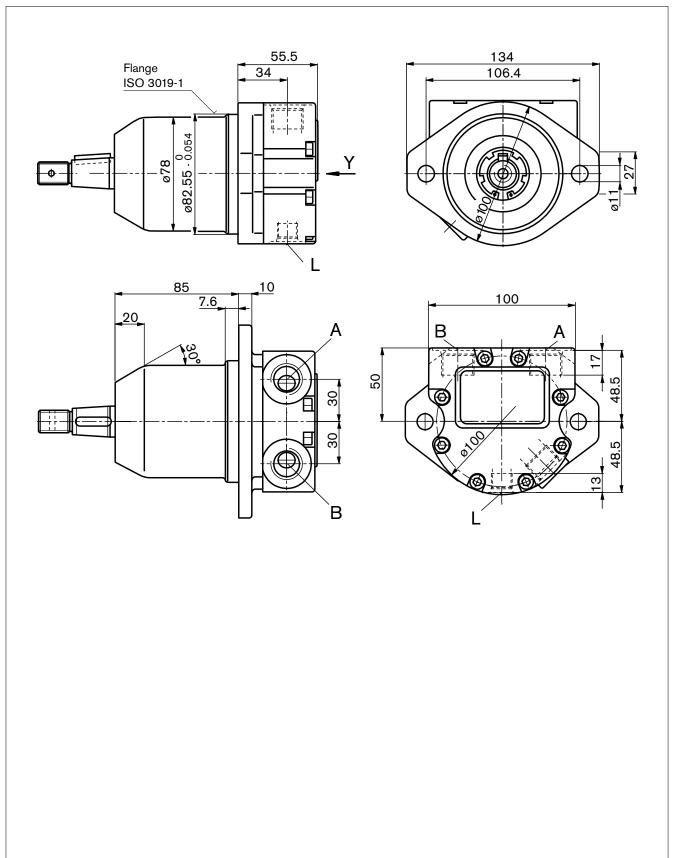
| Designation           | Port for                            | Standard                | Size <sup>2)</sup>        | Max. press.<br>[bar] <sup>3)</sup> | State           |
|-----------------------|-------------------------------------|-------------------------|---------------------------|------------------------------------|-----------------|
| А, В                  | Service line (high pressure series) | SAE J518                | 3/4 in                    | 350                                | 0               |
| Port plate 10         | Mounting bolts                      | DIN 13                  | M10 x 1.5; 17deep         |                                    |                 |
| A, B<br>Port plate 16 | Service line                        | DIN 3852-1              | M27 x 2; 16 deep          | 350                                | 0               |
| L                     | Case drain                          | ISO 11926 <sup>5)</sup> | 7/8-14 UNF-2B; 13<br>deep | 4                                  | O <sup>4)</sup> |
| L <sub>1</sub>        | Case drain                          | ISO 11926 <sup>5)</sup> | 7/8-14 UNF-2B; 13<br>deep | 4                                  | X <sup>4)</sup> |

<sup>1)</sup> ANSI B92.1a-1996, 30° pressure angle, flat base, flank centering, tolerance class 5

<sup>2)</sup> Observe the general instructions on page 28 for the maximum tightening torques.

<sup>3)</sup> Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

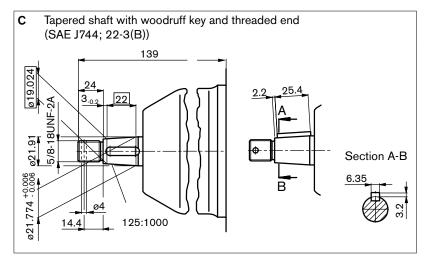
<sup>4)</sup> Depending on the installation position, L or L<sub>1</sub> must be connected (see also page 26 - 27).


<sup>5)</sup> The counterbore can be deeper than stipulated in the standard.

O = Must be connected (plugged on delivery)

# Dimensions A10FE size 10

## A10FE 10/52W-VxC16N000


Before finalising your design request a certified installation drawing. Dimensions in mm



# Dimensions A10FE size 10

Before finalising your design request a certified installation drawing. Dimensions in mm.

#### Drive shaft



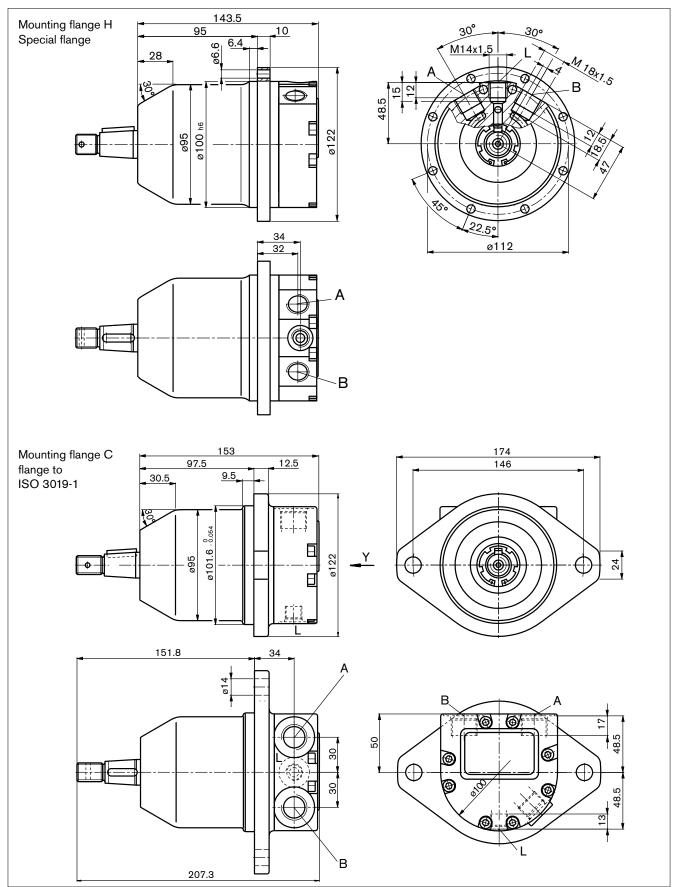
#### Ports

| Designation | Port for     | Standard   | Size <sup>2)</sup> | Max. pressu-<br>re [bar] <sup>3)</sup> | State           |
|-------------|--------------|------------|--------------------|----------------------------------------|-----------------|
| A, B        | Service line | DIN 3852-1 | M18 x 1.5; 17 deep | 350                                    | 0               |
| L           | Case drain   | DIN 3852-1 | M14 x 1.5; 13 deep | 4                                      | O <sup>4)</sup> |

<sup>1)</sup> ANSI B92.1a-1996, 30° pressure angle, flat base, flank centering, tolerance class 5

<sup>2)</sup> Observe the general instructions on page 28 for the maximum tightening torques.

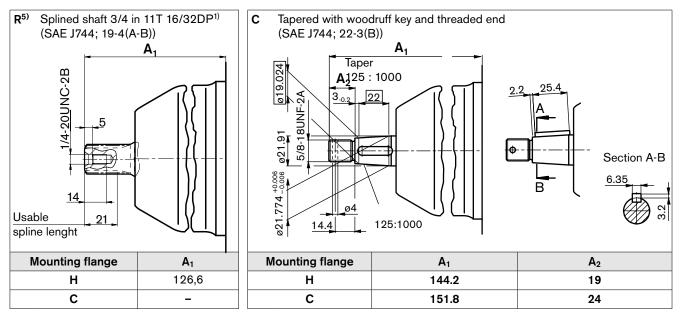
<sup>3)</sup> Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.


<sup>4)</sup> Depending on the installation position, L or L<sub>1</sub> must be connected (see also page 26 - 27).

O = Must be connected (plugged on delivery)

# Dimensions A10FE size 11 - 18

Before finalising your design request a certified installation drawing. Dimensions in mm.


### A10FE 11-18/52W-Vxx16N000



# Dimensions A10FE size 11 - 18

Before finalising your design request a certified installation drawing. Dimensions in mm

### **Drive shafts**



### Ports

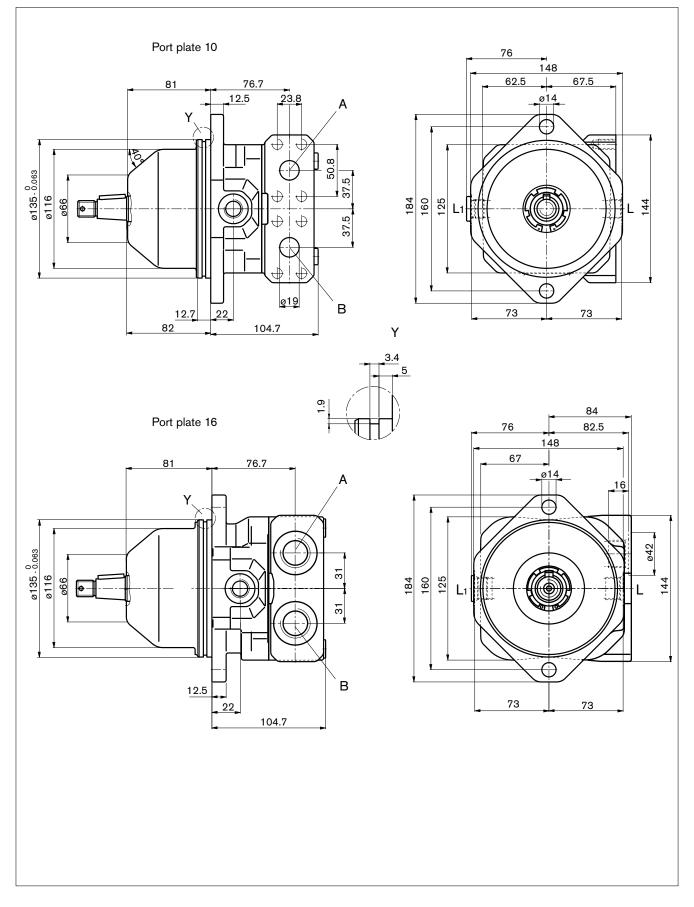
| Designation    | Port for     | Standard   | Size <sup>2)</sup> | Max. pressu-<br>re [bar] <sup>3)</sup> | State           |
|----------------|--------------|------------|--------------------|----------------------------------------|-----------------|
| А, В           | Service line | DIN 3852-1 | M18 x 1.5; 12 deep | 350                                    | 0               |
| L              | Case drain   | DIN 3852-1 | M14 x 1.5; 12 deep | 4                                      | O <sup>4)</sup> |
| L <sub>1</sub> | Case drain   | DIN 3852-1 | M14 x 1.5; 12 deep | 4                                      | X <sup>4)</sup> |

<sup>1)</sup> ANSI B92.1a-1996, 30° pressure angle, flat base, flank centering, tolerance class 5

<sup>2)</sup> Observe the general instructions on page 28 for the maximum tightening torques.

<sup>3)</sup> Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

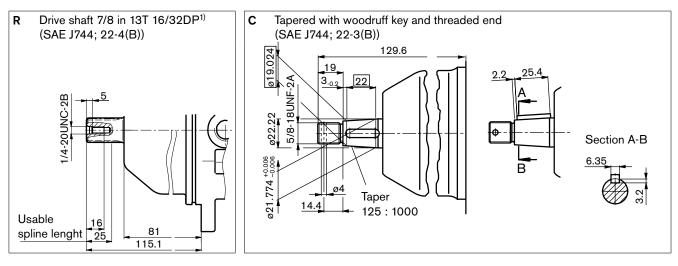
<sup>4)</sup> Depending on the installation position, L or  $L_1$  must be connected (see also page 26 - 27).


<sup>5)</sup> R-shaft with C-flange for size 10 resp. 11 to 18 in preparation.

O = Must be connected (plugged on delivery)

# Dimensions A10FE size 23 - 28

Before finalising your design request a certified installation drawing. Dimensions in mm


## A10FE 23-28/52W-VxFxxN000



## Dimensions A10FE size 23 - 28

Before finalising your design request a certified installation drawing. Dimensions in mm

#### **Drive shafts**



#### Ports

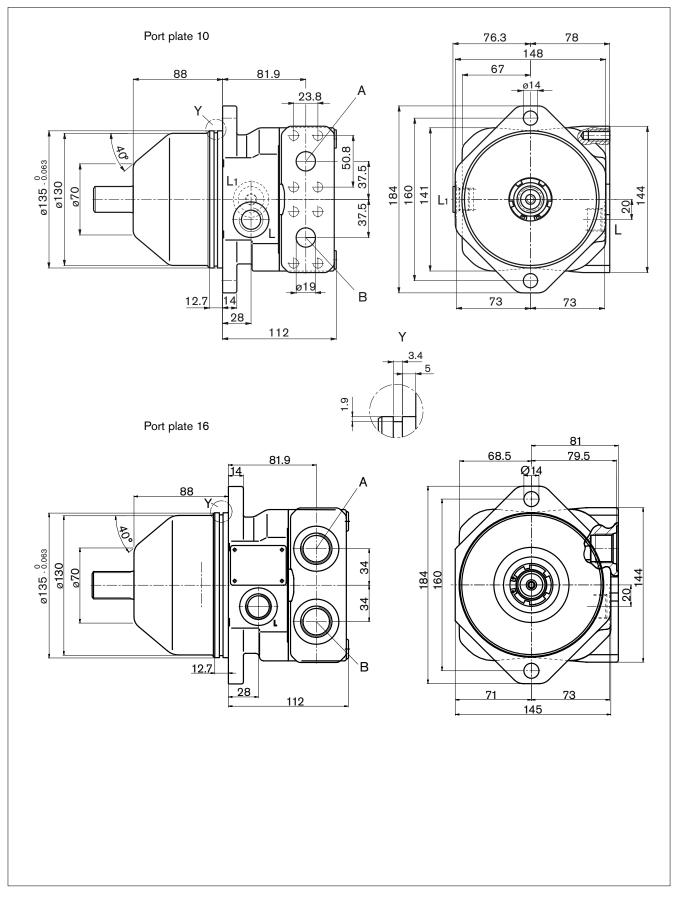
| Designation           | Port for                            | Standard                | Size <sup>2)</sup>     | Max. pressure<br>[bar] <sup>3)</sup> | State           |
|-----------------------|-------------------------------------|-------------------------|------------------------|--------------------------------------|-----------------|
| A, B                  | Service line (high pressure series) | SAE J518                | 3/4 in                 | 350                                  | 0               |
| Port plate 10         | Mounting bolts                      | DIN 13                  | M10 x 1.5; 17 deep     |                                      |                 |
| A, B<br>Port plate 16 | Service line                        | DIN 3852-1              | M27 x 2; 16 deep       | 350                                  | 0               |
| L                     | Case drain                          | ISO 11926 <sup>5)</sup> | 3/4-16 UNF-2B; 11 deep | 4                                    | O <sup>4)</sup> |
| L <sub>1</sub>        | Case drain                          | ISO 11926 <sup>5)</sup> | 3/4-16 UNF-2B; 11 deep | 4                                    | X <sup>4)</sup> |

<sup>1)</sup> ANSI B92.1a-1996, 30° pressure angle, flat base, flank centering, tolerance class 5

<sup>2)</sup> Observe the general instructions on page 28 for the maximum tightening torques.

<sup>3)</sup> Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

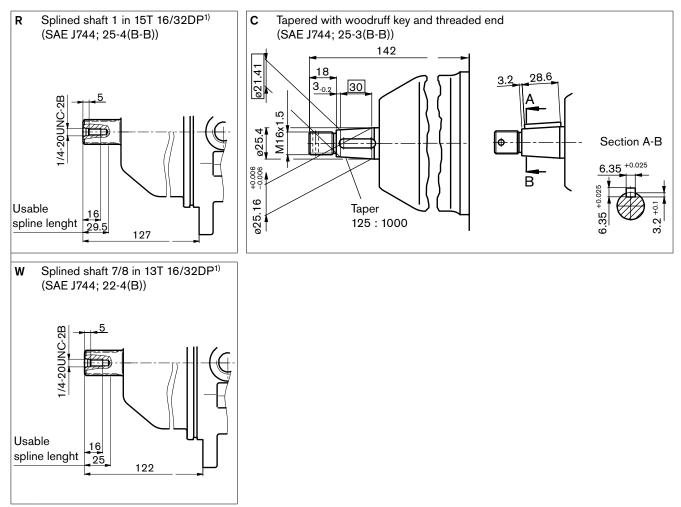
<sup>4)</sup> Depending on the installation position, L or L<sub>1</sub> must be connected (see also page 26 - 27).


<sup>5)</sup> The counterbore can be deeper than stipulated in the standard.

O = Must be connected (plugged on delivery)

# Dimensions A10FE size 37 - 45

Before finalising your design request a certified installation drawing. Dimensions in mm


### A10FE 37-45/52W-VxFxxN000



# Dimensions A10FE size 37 - 45

Before finalising your design request a certified installation drawing. Dimensions in mm.

#### **Drive shafts**



#### Ports

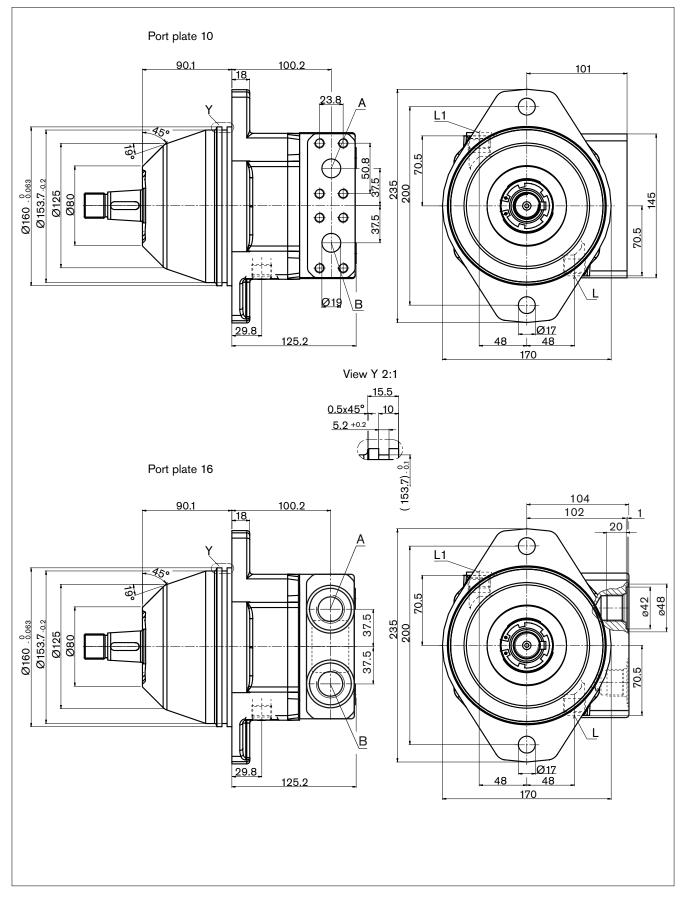
| Designation           | Port for                           | Standard                | Size <sup>2)</sup>     | Max. pressure<br>[bar] <sup>3)</sup> | State           |
|-----------------------|------------------------------------|-------------------------|------------------------|--------------------------------------|-----------------|
| A, B                  | Service line (high pressure range) | SAE J518                | 3/4 in                 | 350                                  | 0               |
| Port plate 10         | Mounting bolts                     | DIN 13                  | M10 x 1.5; 17 deep     |                                      |                 |
| A, B<br>Port plate 16 | Service line                       | DIN 3852-1              | M27 x 2; 16 deep       | 350                                  | 0               |
| L                     | Case drain                         | ISO 11926 <sup>5)</sup> | 7/8-14 UNF-2B; 13 deep | 4                                    | O <sup>4)</sup> |
| L <sub>1</sub>        | Case drain                         | ISO 11926 <sup>5)</sup> | 7/8-14 UNF-2B; 13 deep | 4                                    | X <sup>4)</sup> |

<sup>1)</sup> ANSI B92.1a-1996, 30° pressure angle, flat base, flank centering, tolerance class 5

<sup>2)</sup> Observe the general instructions on page 28 for the maximum tightening torques.

<sup>3)</sup> Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

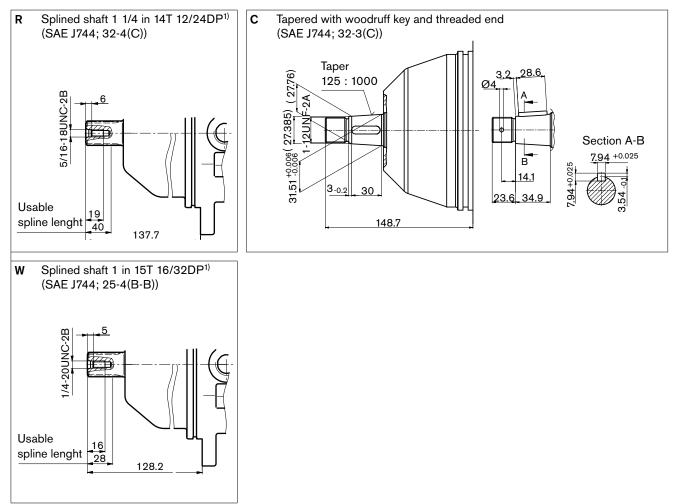
<sup>4)</sup> Depending on the installation position, L or  $L_1$  must be connected (see also page 26 - 27).


<sup>5)</sup> The counterbore can be deeper than stipulated in the standard.

O = Must be connected (plugged on delivery)

# Dimensions A10FE size 58 - 63

Before finalising your design request a certified installation drawing. Dimensions in mm.


## A10FE 58-63/52W-VxFxxN000



# Dimensions A10FE size 58 - 63

Before finalising your design request a certified installation drawing. Dimensions in mm.

### **Drive shafts**



#### Ports

| Designation           | Port for                           | Standard                | Size <sup>2)</sup>     | Max. pressure<br>[bar] <sup>3)</sup> | State           |
|-----------------------|------------------------------------|-------------------------|------------------------|--------------------------------------|-----------------|
| А, В                  | Service line (high pressure range) | SAE J518                | 3/4 in                 | 350                                  | 0               |
| Port plate 10         | Mounting bolts                     | DIN 13                  | M10 x 1.5; 17 deep     |                                      |                 |
| A, B<br>Port plate 16 | Service line                       | DIN 3852-1              | M27 x 2; 16 deep       | 350                                  | 0               |
| L                     | Case drain                         | ISO 11926 <sup>5)</sup> | 7/8-14 UNF-2B; 13 deep | 4                                    | O <sup>4)</sup> |
| L <sub>1</sub>        | Case drain                         | ISO 11926 <sup>5)</sup> | 7/8-14 UNF-2B; 13 deep | 4                                    | X <sup>4)</sup> |

<sup>1)</sup> ANSI B92.1a-1996, 30° pressure angle, flat base, flank centering, tolerance class 5

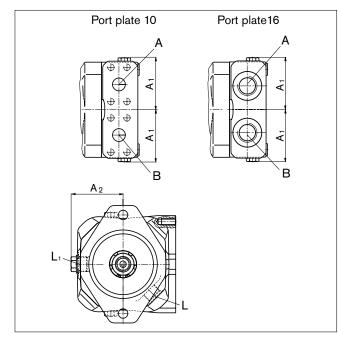
<sup>2)</sup> Observe the general instructions on page 28 for the maximum tightening torques.

<sup>3)</sup> Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

<sup>4)</sup> Depending on the installation position, L or  $L_1$  must be connected (see also page 26 - 27).

<sup>5)</sup> The counterbore can be deeper than stipulated in the standard.

O = Must be connected (plugged on delivery)


## Flushing and boost pressure valve

### **Ordering Option N007**

This valve assembly is used to flush an unacceptable heat load out of the closed loop circuit, and to maintain the necessary minimum boost pressure (16 bar, fixed setting). The valve is integrated into the port plate.

A built-in fixed orifice determines the flushing flow, which is taken out of the low pressure side of the loop and directed into the motor housing. It leaves the housing together with the case drain flow. This combined flow is replenished with fresh oil by means of the boost pump.

#### Dimensions A10FM / A10FE



# Anti cavitation valve

## **Ordering option N002**

When stopping a system with a relatively large mass (i.e. fan drive) the anti-cavitation valve provides fluid to the motor inlet during the coasting time.

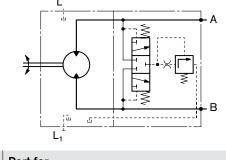
The valve assembly is integrated inside the port plate.

#### Important

It is necessary to specify a direction of rotation (clockwise or counter clockwise) looking at the shaft end of the motor.

The outside dimensions are identical to the standard units except the A10FE 11 - 18 with the 8-hole mounting flange, for the difference in lenght see unit dimensions.

Before finalising your design request a certified installation drawing. Dimensions in mm.


#### Standard flushing flow

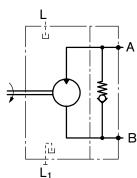
With low press. side  $p_{ND} = 20$  bar and an orifice dia. 1,6 mm: 5,5 L/min (sizes 23 - 63). Other orifice diameters are available, please state in clear text.

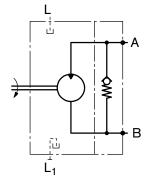
Further flushing flows for sizes 23 - 63 see table:

| Flushing flow [L/min] | Orifice ø [mm] |
|-----------------------|----------------|
| 3.5                   | 1.2            |
| 5.5                   | 1.6            |
| 9                     | 2              |

#### Schematic




|                   | Port for                |
|-------------------|-------------------------|
| A; B              | Service line            |
| L, L <sub>1</sub> | Case drain (L1 plugged) |


| Size (NG) | <b>A</b> <sub>1</sub> | A <sub>2</sub> |
|-----------|-----------------------|----------------|
| 23/28     | 72                    | 72             |
| 37/45     | 77                    | 77             |
| 58/63     | 77                    | 82             |

#### Schematic

Clockwise rotation





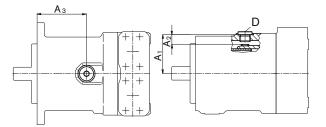


|                   | Port for                |
|-------------------|-------------------------|
| А; В              | Service line            |
| L, L <sub>1</sub> | Case drain (L1 plugged) |

# Speed sensor

### Ordering option D

The version A10FM...D comprises gearing around the rotary unit (prepared for speed pickup).


In this case, the rotating cylinder barrel can provide a speed dependent signal, which can be picked up by a suitable sensor and processed for further evaluation. Sensor port (D) will be closed for delivery.

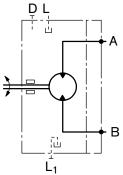
A motor, prepared for speed sensing will be delivered without the necessary accessory parts which must be ordered separately.

Inductive speed sensor ID R 18/20-L250 (see RE 95130) and mounting parts (spacer and 2 seals per kit) can be ordered separately with the following part numbers:


| Size (NG) | Ordering Nr.   | Nr. of teeth |
|-----------|----------------|--------------|
| 23/28     | R902428802     | 48           |
| 37/45     | R902433368     | 48           |
| 58/63     | in preparation | 9            |

#### Dimensions




A10FM....D

| Size (NG) | A1 | A2   | A3    | Port "D"<br>(plugged) |
|-----------|----|------|-------|-----------------------|
| 23/28     | 61 | 15.5 | 101.8 | M18 x 1.5             |
| 37/45     | 66 | 17   | 84.2  | M18 x 1.5             |
| 58/63     | 69 | 14.8 | 128.5 | M18 x 1.5             |



A10FE.....D

| Size (NG) | A1 | A2   | A3   | Port "D"<br>(plugged) |
|-----------|----|------|------|-----------------------|
| 23/28     | 61 | 15.5 | 27.7 | M18 x 1.5             |
| 37/45     | 66 | 17   | 33.9 | M18 x 1.5             |
| 58/63     | 69 | 14.8 | 46.1 | M18 x 1.5             |



Schematic

| D 17 |  |  |
|------|--|--|

|                   | Port for                            |
|-------------------|-------------------------------------|
| A; B              | Service line                        |
| L, L <sub>1</sub> | Case drain (L <sub>1</sub> plugged) |
|                   |                                     |

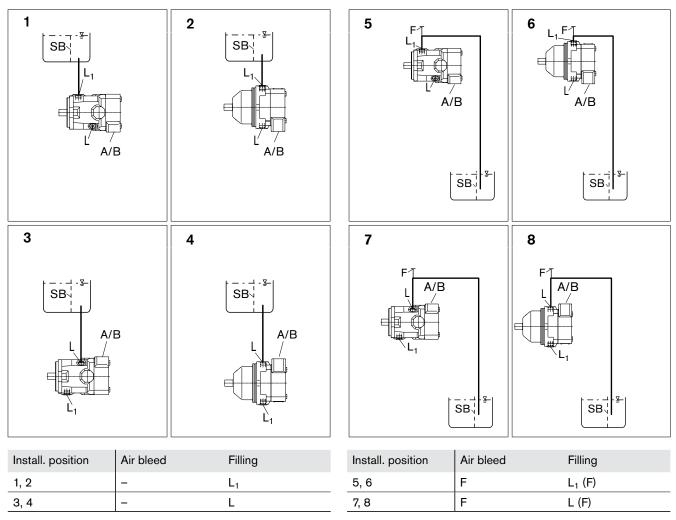
## Installation instructions

#### General

At all times, the axial piston unit must be filled with fluid and air bled during commissioning and operation. This must also be observed after a prolonged period of standstill as the system may drain back to the reservoir via the hydraulic lines.

The case drain fluid in the motor housing must be directed to tank via the highest available tank port and must drain the fluid below the minimum fluid level in the reservoir.

#### Installation position


See following examples 1 to 8. Recommended installation positions: 1 and 3 resp. 2 and 4. Additional installation positions are available on request.

#### Below reservoir installation (standard)

Below reservoir installation means, that the motor is mounted below the minimum fluid level.

#### Above reservoir installation

Above reservoir installation means, that the motor is mounted above the minimum fluid level. A check valve in the case drain line is only permissible under certain conditions; please consult us.



 $L/L_1 = Case drain port$ , F = Air bleed resp. filling port, SB = Baffle.

# Notes

# **General instructions**

- The motor A10FM and A10FE has been designed to be used in open and closed circuits.
- Project planning, assembly and commissioning of the axial piston unit require the involvement of qualified personnel.
- Before operating the axial piston unit read the relevant operating manual thoroughly and completely. If needed request this information from Rexroth
- During and shortly after operation, there is a risk of burns on the axial piston unit and especially on the solenoids. Take appropriate safety measures (e.g. by wearing protective clothing).
  - Pressure ports:

The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified operating conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.

- The service line ports and function ports are only designed to accommodate hydraulic lines.
- The data and notes contained herein must be adhered to.
- The product is not approved as a component for the safety concept of a general machine according to DIN 13849.
- The following tightening torques apply:
  - Fittings:

Observe the manufacturer's instructions regarding the tightening torques of the fittings used.

- Mounting bolts:

For fixing screws with metric ISO thread according to DIN 13 or thread according to ASME B1.1, we recommend checking the tightening torque individually according to VDI 2230.

- Mounting bolts threads and threaded ports in the axial piston unit: The maximum permissible tightening torques M<sub>G max</sub> are maximum values for the female threads and must not be exceeded. For values, see the following table.
- Threaded plugs:

For the threaded plugs, supplied with the axial piston unit, the required tightening torques  $M_V$  apply. For values, see the following table.

| Ports<br>Standard | Thread sizes  | Maximum permissible<br>tightening torque for the<br>female threads M <sub>G max</sub> | Required tightening torque for the threaded plugs $M_{\rm V}$ | WAF hexagon socket of the threaded plugs |
|-------------------|---------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------|
| DIN 3852          | M14 x 1.5     | 80 Nm                                                                                 | 35 Nm <sup>1)</sup>                                           | 6 mm                                     |
|                   | M18 x 1.5     | 140 Nm                                                                                | 60 Nm <sup>1)</sup>                                           | 8 mm                                     |
|                   | M27 x 2       | 330 Nm                                                                                | 135 Nm <sup>1)</sup>                                          | 12 mm                                    |
| ISO 11926         | 3/4-16 UNF-2B | 160 Nm                                                                                | 62 Nm                                                         | 5/16 in                                  |
|                   | 7/8-14 UNF-2B | 240 Nm                                                                                | 110 Nm                                                        | 3/8 in                                   |

1) The tightening torques apply for screws in the "dry" state as received on delivery and in the "lightly oiled" state for installation.

Bosch Rexroth AG Axial Piston Units An den Kelterwiesen 14 72160 Horb a.N., Germany Telephone +49 (0) 74 51 92-0 Fax +49 (0) 74 51 82 21 info.brm-ak@boschrexroth.de www.boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.