and Controls

Mobile Hydraulics Automation

Service

Rexroth **Bosch Group**

Fixed Displacement Motor A4FM

RE 91 120/04.00 replaces: 03.95 and RE 91 100

for open and closed circuits

Sizes 22...500 Series 1, Series 3 Nominal pressure up to 400 bar Peak pressure up to 450 bar

Index

Features

- Ordering Code
- Technical Data
- Installation and Commissioning Guidelines
- Flow and Output Torque
- Unit Dimensions, Sizes 22, 28
- Unit Dimensions, Size 40
- Unit Dimensions, Size 56
- Unit Dimensions, Size 71
- Unit Dimensions, Size 125
- Unit Dimensions, Size 250

Features

- 1 - Axial Piston Fixed Displacement Motor A4FM of swashplate design is used in open and closed loop circuits for hydrostatic 2 drives. 3...5
 - _ Output speed is proportional to input flow and inversely propor-4 tional to motor displacement. 6
 - Output torque increases with the pressure drop across the motor _ between the high and low pressure sides.
 - 8 Long service life, optimum efficiencies _
 - 9 Compact design for special applications where A2FM cannot be _ 10 applied
 - 11 Proven rotary group in swashplate-technology _
 - 12

7

Ordering Code

							A4F	M	/			v -	-		
Hydraulic fluid														T	
Mineral oil, HFD (no code)				_											
HFA, HFB, HFC-Hydraulic fluid (on	lv sizes 71!	500)	E	-											
		,													
Axial piston unit															
Swashplate design, fixed displacen	nent		A	1F											
Mode of operation															
Motor			N	1											
Size															
Displacement V _q (cm ³)	22	28	40	56	71	125	250	500							
. 5	•	•			•		•	0							
Soviac															
Series			Ci-z	ر کر مر	56 1	2550		3							
				e 71	. 50, 17	2000		<u> </u>							
			5120	. /1											
Index															
			Size	es 22	.56			2							
			Size	es 71	.500			0							
Direction of rotation															
Viewed on shaft end			alte	ernatin	g			W							
a 1															
Seals															
NBR (Nitril-caoutchouc), shaft sealing i	n FKM (Fluor-o	caoutcl	houc)		zes 22				N	4					
					zes 71				P V	-					
FKM (Fluor-caoutchouc)				SIZ	zes 71	500			V						
Shaft end	22	28	40	56	71	125	250	500							
Splined shaft SAE	0	0	-	_	_	_		_	S						
Splined shaft SAE	•	•	_	_	_	_	_	_	Т	1					
Splined shaft DIN 5480	_	-	•	•	•	•	•	0	Z]					
Parallel with key DIN 6885	-	_	_	_	•	•	٠	0	Р						
Mounting flange	22	28	40	56	71	125	250	500							
SAE 2-hole	•	•	•	•	_	_	-		С	-					
ISO 4-hole		-	_	_	•	•	•	_	В	4					
ISO 8-hole	-	-	_	_	_	-	-	0	Н						
Service line connections						77	40	56		71	500				
Service line connections Ports A, B: SAE at rear (with metric fix						22.	40	56 •			.500		01	1	

 \bullet = available

 \circ = available on enquiry

- = not available

Technical Data

Fluid

We request that before starting a project detailed information about the choice of pressure fluids and application conditions are taken from our catalogue sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable hydraulic fluids) and RE 90223 (fire resistance fluids, HF).

When using HF- or environmentally acceptable hydraulic fluids possible limitations for the technical data have to be taken into consideration. If necessary please consult our technical department (please indicate type of the hydraulic fluid used for your application on the order sheet).

The sizes 22..56 are not suitable for operation with HFA, HFB and HFC.

Operation viscosity range

In order to obtain optimum efficiency and service life, we recommend that the operating viscosity (at operating temperature) be selected from within the range:

 $v_{opt} = operating viscosity 16...36 mm^2/s$

referred to the loop temperature (closed circuit) or tank temperature (open circuit).

Viscosity limits

The limiting values for viscosity are as follows:

Size 22...56

 $v_{min} = 5 \text{ mm}^2$ /s, short term at a max. permissible temp. of t_{max}= 115°C $v_{max} = 1600 \text{ mm}^2$ /s, short term on cold start (t_{min} = -40°C)

Size 71...500

 $\nu_{min}~=~10~mm^2/s,$ short term at a max. permissible drain temp. $t_{max}=90^\circ C$

 $v_{max} = 1000 \text{ mm}^2/\text{s}$, short term on cold start ($t_{min} = -25^{\circ}\text{C}$)

Please note that the max. fluid temperature is also not exceeded in certain areas (for instance bearing area).

At temperature of -25°C up to -40°C special measures may be required for certain installation positions, please contact us.

Selection diagram

Notes on the selection of the hydraulic fluid

In order to select the correct fluid, it is necessary to know the operating temperature in the loop (closed circuit) or the tank temperature (open circuit) in relation to the ambient temperature.

The hydraulic fluid should be selected so that within the operating temperature range, the operating viscosity lies within the optimum range (v_{opt}) (see shaded section of the selection diagram). We recommend that the highest possible viscosity range should be chosen in each case.

Example: At an ambient temperature of X°C the operating temperature is 60°C. Within the operating viscosity range (v_{opt} ; shaded area), this corresponds to viscosity ranges VG 46 or VG 68. VG 68 should be selected.

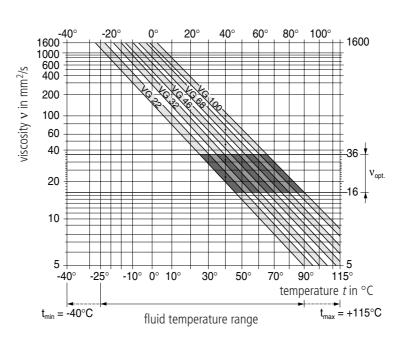
Important: The leakage oil (case drain oil) temperature is influenced by pressure and motor speed and is always higher than the circuit temperature. However, at no point in the circuit may the temperature exceed 115°C for sizes 22...56 or 90°C for sizes 71...500.

If it is not possible to comply with the above condition because of extreme operating parameters or high ambient temperatures we recommend housing flushing. Please consult us.

Filtration

The finer the filtration the better the achieved purity grade of the pressure fluid and the longer the life of the axial piston unit. To ensure the functioning of the axial piston unit a minimum purity grade of:

9 to NAS 1638


18/15 to ISO/DIS 4406 is necessary.

At very high temperatures of the hydraulic fluid (90°C to max. 115°C, not permissible for sizes 71...500) at least cleanless class

8 to NAS 1638

17/14 to ISO/DIS 4406 is necessary.

If above mentioned grades cannot be maintained please consult supplier.

Technical Data

valid for operation with mineral oils

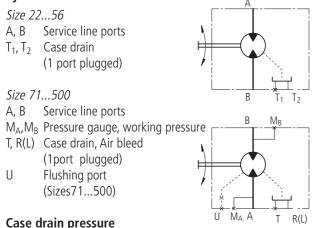
Flushing of the bearings (Sizes 125...500)

operating conditions, flushing guantities and notes on bearing flushing see RE 92 050 (A4VSO).

Operating pressure range

Maximum pressure at port A or B (Pressure data to DIN 24312)

Size		2256	71500
Nominal pressure p _N	bar	400 ¹)	350
Peak pressure p _{max}	bar	450 ¹)	400

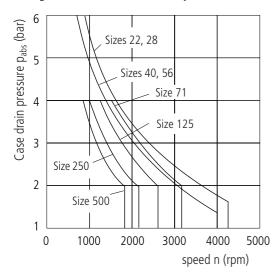

1) Size 28 with S-shaft: 315/350 bar

The summ of the pressures at ports A and B may not exceed 700 bar.

Direction of flow

clockwise rotation	anti-clockwise rotation
A to B	B to A

Symbol


The max. permissible leakage pressure (housing pressure) is dependent on speed (see diagram). The pressure in the housing must be equal to or greater than the external pressure on the shaft sealing ring.

Max. leakage pressure (housing pressure)

6 bar (sizes 22...56)

4 bar(sizes71...500)

A leakage line to the tank is necessary.

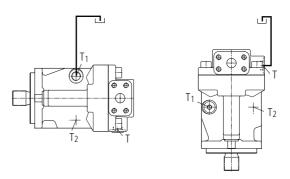
Installation and Commissioning Guidelines

General

At start-up and during operation the motor housing has imperatively to be filled up with hydraulic fluid (filling of the case chamber). Startup has to be carried out at low speed and without load till the system is completely bleeded.

At a longer standstill the case may discharge via operating line. At new start-up a sufficient filling of the housing has to be granted.

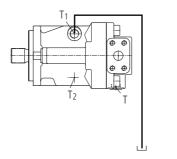
The leakage oil in the housing has to be discharged to the tank via highest positioned case drain port.

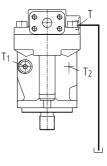

Installation position

- Sizes 2256:	Shaft horizontal or shaft down
- Sizes 71 (series1):	Shaft horizontal, vertical installation position as to agreement
- Sizes 125500:	Optional, at vertical installation position bearing flushing is recommended at port U (as to RD 9205)

Installation below tank level

Motor below min. oil level in the tank (standard)


- → Fill up axial piston motor before start-up via highest positioned case drain port
- → Operate motor at low speed till motor system is completely filled up
- \rightarrow Minimum immerson depth of the drain line in the tank: 200mm (relative to the min. oil level in the tank).



Installation on top of tank level

Motor on top of min. oil level in the tank

- → Actions as installation below tank level
- → Note: installation position "drive shaft up" for sizes 22...56 not permissible

valid for operation with mineral oil

Technical Data

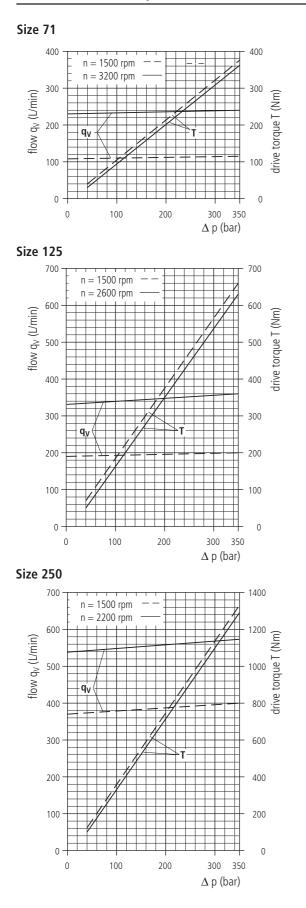
Table of values (theoretical values, without considering η_{mh} and η_{v} ; values rounded)

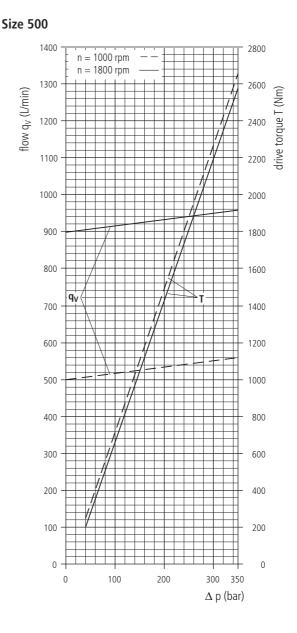
		22	28	40	56	71	125	250	500
V _a	cm ³	22	28	40	56	71	125	250	500
<u> </u>	s rpm	4250	4250	4000	3600	3200	2600	2200	1800
		5000	5000	5000	4500	_	_	_	_
q _{v max}	L/min	93	119	160	202	227	325	550	900
T _K	Nm/bar	0,35	0,445	0,64	0,89	1,13	1,99	3,97	7,95
T _{max}	Nm	140	178	255	356	395 ²)	696 ²)	1391 ²)	2783 ²)
	L	0,3	0,3	0,4	0,5	2,0	3,0	7,0	11,0
J	kgm ²	0,0015	0,0015	0,0043	0,0085	0,0121	0,0300	0,0959	0,3325
	Nm (app	rox.)				320	564	1127	
т	kg	11	11	15	21	34	61	120	
	$ \frac{n_{max interm.}^{1}}{q_{V max}} $ $ \frac{T_{K}}{T_{max}} $ $ J $	g n _{max continuous} rpm n _{max interm.} 1) rpm q _{V max} L/min T _K Nm/bar T _{max} Nm J kgm² Nm (app	V_g cm ³ 22 $n_{max continuous}$ rpm 4250 $n_{max interm.}^{1}$ rpm 5000 $q_{V max}$ L/min 93 T_K Nm/bar 0,35 T_{max} L 0,3 J kgm ² 0,0015 Nm (approx.) Nm (approx.)	V_g cm ³ 22 28 $n_{max continuous}$ rpm 4250 4250 $n_{max interm.}^{1}$ rpm 5000 5000 $q_{V max}$ L/min 93 119 T_K Nm/bar 0,35 0,445 T_{max} L 0,3 0,3 J kgm ² 0,0015 0,0015 Nm (approx.) Nm (approx.) Nm Nm	V_g cm ³ 22 28 40 $n_{max continuous}$ rpm 4250 4250 4000 $n_{max interm.}^{1}$ rpm 5000 5000 5000 $q_{V max}$ L/min 93 119 160 T_K Nm/bar 0,35 0,445 0,644 T_{max} Nm 140 178 255 L 0,33 0,3 0,4 J kgm ² 0,0015 0,0015 0,0043 Nm (approx.) Nm (approx.) Nm Nm Nm Nm	V_g cm ³ 22 28 40 56 $n_{max continuous}$ rpm 4250 4250 4000 3600 $n_{max interm.}^{-1}$ rpm 5000 5000 5000 4500 $q_{V max}$ L/min 93 119 160 202 T_K Nm/bar 0,35 0,445 0,644 0,899 T_{max} Nm 140 178 255 356 J kgm ² 0,0015 0,0015 0,0043 0,0085 Nm (approx.) Nm (approx.) Nm 140 178 100 100	V_g cm ³ 22 28 40 56 71 $n_{max continuous}$ rpm 4250 4250 4000 3600 3200 $n_{max interm.}^{1}$ rpm 5000 5000 5000 4500 $ q_{V max}$ L/min 93 119 160 202 227 T_K Nm/bar 0,35 0,445 0,64 0,89 1,13 T_{max} Nm 140 178 255 356 395 ²) L 0,3 0,3 0,4 0,5 2,0 J kgm ² 0,0015 0,0015 0,0043 0,085 0,0121 Nm (approx.) 320 320 320 320 320 320	V_g cm³2228405671125 $n_{max continuous}$ rpm425042504000360032002600 $n_{max interm.}^{-1}$ rpm5000500050004500 $ q_{V max}$ L/min93119160202227325 T_K Nm/bar0,350,4450,640,891,131,99 T_{max} Nm140178255356395²)696²) J kgm²0,00150,00150,00430,0850,01210,0300 Mm (approx.) 320 564	V_g cm³2228405671125250 $n_{max continuous}$ rpm4250425040003600320026002200 $n_{max interm.}$ rpm5000500050004500 $ q_{V max}$ L/min93119160202227325550 T_K Nm/bar0,350,4450,640,891,131,993,97 T_{max} Nm14017825535639526962)13912) L 0,330,30,440,552,03,07,0 J kgm²0,00150,00150,00430,0850,01210,03000,0959Nm (approx.)3205641127

¹) Intermittent max. speed at overspeed: $\Delta p = 70...150$ bar ²) $\Delta p = 350$ bar

Calculation of size

 $q_v = \frac{V_g \bullet n}{1000 \bullet \eta_v}$ V_q = geometric displacement per rev. in cm³ Flow in L/min Δp = pressure differential in bar $n = \frac{q_V \bullet 1000 \bullet \eta_V}{V_g}$ = speed in rpm n Output speed η_v = volumetric efficiency $\eta_{\text{mh}} \ = \ \text{mech.-hyd. efficiency}$ $T = \frac{V_g \bullet \Delta p \bullet \eta_{mh}}{20 \bullet \pi}$ in Nm Output torque η_t = overall efficiency $= T_{K} \bullet \Delta p \bullet \eta_{mh}$ $\mathsf{P} = \frac{\mathsf{T} \bullet \mathsf{n}}{9549} = \frac{2 \,\pi \bullet \mathsf{T} \bullet \mathsf{n}}{60\,000}$ Output power in kW $=\frac{q_v\bullet\Delta p\bullet\eta_t}{600}$


Output drive


permissible axial and radial loading on drive shaft

Size				22	28	40	56
Distance of F _q Fq		а	mm	17,5	17,5	17,5	17,5
(from shaft shoulder)	#1	b	mm	30	30	30	30
a,	b, c	С	mm	42,5	42,5	42,5	42,5
Max. permissible radial force at distance	ie a	F _{q max}	Ν	2500	2050	3600	5000
	b	F _{q max}	Ν	1400	1150	2890	4046
	С	F _{q max}	Ν	1000	830	2416	3398
Max. permissible axial load	-111	- F _{ax max}	Ν	1557	1557	2120	2910
		+ F _{ax max}	, N	417	417	880	1490

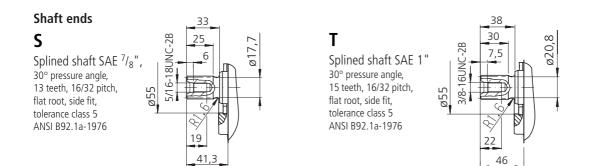
Size				71	125	250	500
Max. axial force at housing pressure p_{max} 1 bar abs.	↓ ^F ª ⊢	\pm F _{ax max}	Ν	1400	1900	3000	4000
Max. axial force at housing pressure p_{max} 4 bar abs.	± F _{ax}	+ F _{ax max}	Ν	810	1050	1850	2500
	X/2 X/2	- F _{ax max}	Ν	1990	2750	4150	5500
Max. radial force	X	$F_{q\ max}$	Ν	1700	2500	4000	5000

Flow and Drive Torque

(Fluid: Hydraulic oil ISO VG 46 DIN 51519, $t = 50^{\circ}C$)

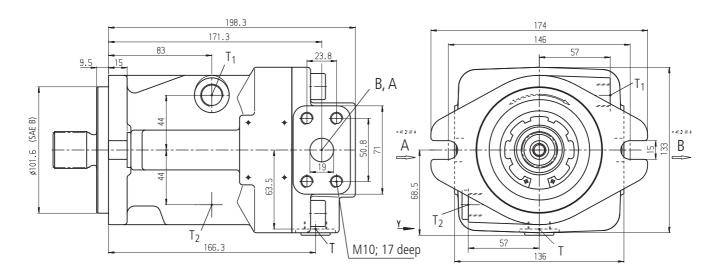
Unit Dimensions, Size 22, 28

Before finalising your design, please request a certified drawing.



Connections

A, B Service line ports


 T_1, T_2 Leakage port / oil filling port

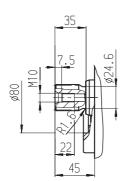
SAE ¹/₂" 420 bar (6000 psi) high pressure series M18x1,5; 12 deep

Unit Dimensions, Size 40

Before finalising your design, please request a certified drawing.

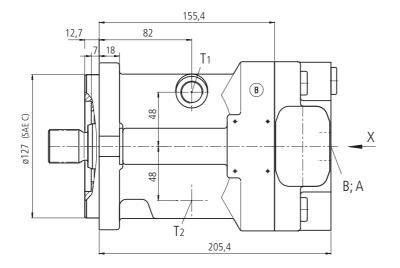
Connections

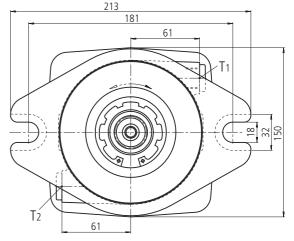
A, B Service line ports


T, T_1 , T_2 Leakage port / oil filling port

SAE ³/₄" 420 bar (6000 psi) high pressure serie M18x1,5; 15 deep

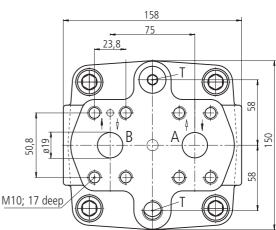
Shaft ends

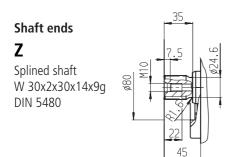

Ζ


Splined shaft W 30x2x30x14x9g DIN 5480

Unit Dimensions, Size 56

Before finalising your design, please request a certified drawing.

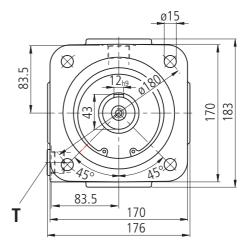


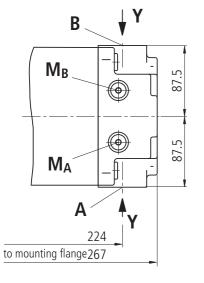

Connections

A, B Service line ports

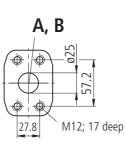
T, T₁, T₂ Leakage port / oil filling port

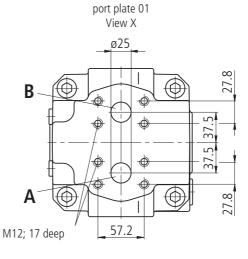

SAE $\frac{3}{4}$ " 420 bar (6000 psi) high pressure serie M 18x1,5 ; 12 deep



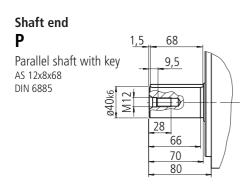

Unit Dimensions, Size 71

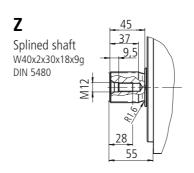
Before finalising your design, please request a certified drawing.



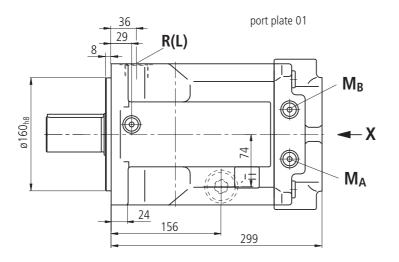


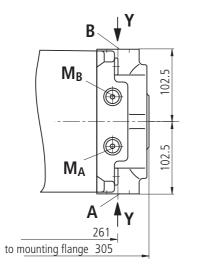
port plate 02


View Y

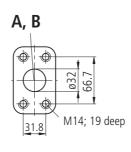


Connections

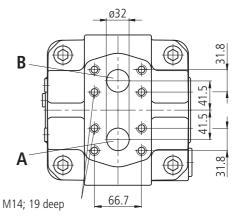

А, В	service line ports	SAE 1"
		(high pressure series)
R (L)	oil filling and bleed	M27x2
Т	oil drain (plugged)	M27x2
${\rm M}_{\rm A'}~{\rm M}_{\rm B}$	measuring port for pressure (plugged)	M14x1,5


Before finalising your design, please request a certified drawing.

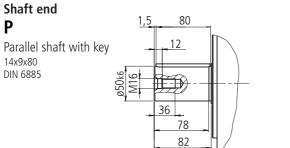
Unit Dimensions, Size 125

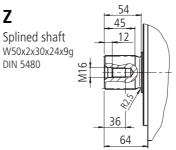


102 ø20 U \otimes \otimes 98.5 1 213 200 4 \otimes 45° 45° 98.5 Τ 200 206



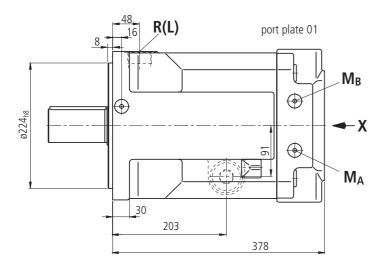
View Y





Connections

А, В	service line ports	SAE 1 ¹ / ₄ " (high pressure series)
		(iligit pressure series)
R (L)	oil filling and bleed	M33x2
Т	oil drain (plugged)	M33x2
M_A , M_B	measuring port for pressure (plugged)	M14x1,5
U	Flushing port, flushing of the bearings (plugged)	M14x1,5



92

Before finalising your design, please request a certified drawing.

Unit Dimensions, Size 250

port plate 02

ഹ

132.

ഹ

132.

View Y

A, B

ф,

36.5

038

LΥ

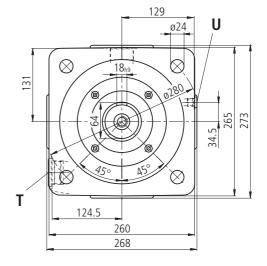
ŧ

 (\bullet)

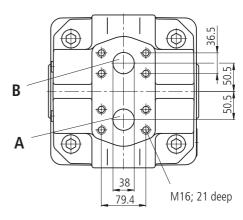
γ

385

В

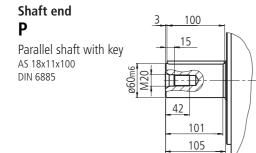

 M_B

MA


to mounting flange

Α

333


Connections

M16; 21 deep

- A, B service line ports
- R (L) oil filling and bleed
- T oil drain (plugged)
- M_A , M_B measuring port for pressure (plugged)

80

- U Flushing port, flushing of the bearings (plugged)
- SAE 1 ¹/₂" (high pressure series) M42x2 M42x2 M14x1,5 M14x1,5

Bosch Rexroth AG Mobile Hydraulics Product Segment Axial Piston Units Elchingen Plant Glockeraustrasse 2 89275 Elchingen, Germany Telephone +49 (0) 73 08 82-0 Facsimile +49 (0) 73 08 72 74 info.brm-ak@boschrexroth.de www.boschrexroth.com/brm

Horb Plant An den Kelterwiesen 14 72160 Horb, Germany Telephone +49 (0) 74 51 92-0 Facsimile +49 (0) 74 51 82 21

115

Z Splined shaft W60x2x30x28x9g DIN 5480

> © 2003 by Bosch Rexroth AG, Mobile Hydraulics, 89275 Elchingen All rights reserved. No part of this document may be reproduced or stored, processed, duplicated or circulated using electronic systems, in any form or by any means, without the prior written authorization of Bosch Rexroth AG. In the event of contravention of the above provisions, the contravening party is obliged to pay compensation.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The given information does not release the user from the obligation of own judgement and verification. It must be remembered that our products are subject to a natural process of wear and aging.