
Fixed Displacement Pump A4FO

RE 91 455/04.00 replaces: 01.94

for open circuits

Sizes 16...500 Series 1, Series 3 Nominal pressure up to 400 bar Peak pressure up to 450 bar

Inhalt

Features Ordering Code 2...3 Technical Data 4...6 Input Power and Flow Unit Dimensions, Sizes 16, 22, 28 Unit Dimensions, Size 40 Unit Dimensions, Size 71 Unit Dimensions, Size 125 Unit Dimensions, Size 250 Unit Dimensions, Size 500 Unit Dimensions, Through Drives Permissible Input and Through Drive Rotation Torques Installation and Commissioning Guidelines

Features

9

10

11

12

13

14

15

16

 A4FO axial piston fixed displacement pumps of swashplate design are used for hydraulic drives in open loop circuits. Flow is proportional to the drive speed and to the displacement. Good suction characteristic 7 Low noise level Long service life Pump combinations possible Through drive for mounting other pumps – Further Informations: Variable Pump A4VSO RE 92 050

Ordering Code

Fluid / Design	16	22	28	40	71	125	250	500			
Mineral oil, HFD-Fluid	•	•	•	•	•	•	•	•			
HFA-, HFB-, HFC-Fluid	-	_	_	_	•	•	•	•	E-		
High-Speed Design	_	_	_	_	_	_	•	•	H-		
Axial piston unit											
Fixed swashplate design									A4F		
•											-
Operation											
Pump in open circuits									0		
Size											
≘ Displacement V _α (cm³)		16	22	28	40	71	125	250	500		
Series											
						.40, 1	2550	00	3		
				size	/				1		
Index											
				size	s 16	.40			2		
					s 71				0		
viewed on shaft end					kwise i-clock				R L		
Seals											
NBR (nitril-caoutchouc), shaft seal in FKM (fluor-caoutchouc)						zes 16				N	
						zes 71				P V	
FKM (fluor-caoutchouc)					SIZ	zes 71	500			V	
Shaft end		16	22	28	40	71	125	250	500		
splined shaft SAE		•	•	•	_	_	_	_	_	S	
splined shaft SAE		-	_	_	•	_	_	_	_	T	
Splined shaft DIN 5480		-	_			•	•	•	•	Z	
parallel shaft, with key DIN 6885		-	_	_	_	•	•	•	•	Р	
Mounting flange		16	22	28	40	71	125	250	500		
SAE 2-hole		•	•	•	•	_	_	T -	_	С	
ISO 4-hole		_	_	_	_	•	•	•	_	В	
ISO 8-hole		_	_	_	_	_	_	_	•	Н	
Service line connections							ç	izes 16	540	sizes 71	500
Pressure and suction port SAE at side ((oppo	site si	de) (m	etric f	ixina «	screws				_	
Pressure and suction port SAE at side,	<u> </u>										
2nd pressure port B ₁ opposite B - wher								_		•	

 \bullet = available

 \bigcirc = in preparation

– not available

Ordering Code

	A4F O / -
Fluid	
Axial piston unit	
Operation	
Size	
Series	
Index	
Direction of rotation	
Seals	
Shaft end	
Mounting flange	
Service line connections	

Through Drive

16 22 28 40 71 125 250 500

flange	hub	for mounting									
_	_		•	•	•	_	•	•	•	•	N00
SAE A, 2-hole	SAE A	G2, A10VSO 10	•	•	•	•	_	_	_	_	K01
SAE B, 2-hole	SAE B	A4FO 1628	-	•	•	_	_	_	_	_	K02
ISO 80, 2-hole	SAE A-B	A10VSO 18	_	-	-	_	0	•	•	0	KB2
ISO 100, 2-hole	SAE B	A10VSO 28	_	-	-	_	0	0	0	0	KB3
ISO 100, 2-hole	SAE B-B	A10VSO 45	_	_	-	_	0	0	0	0	KB4
ISO 125, 2-hole	SAE C	A10VSO 71	-	_	-	_	0	0	0	0	KB5
ISO 125, 2-hole	SAE C-C	A10VSO 100	_	-	-	_	_	0	0	0	KB6
ISO 180, 4-hole	SAE D	A10VSO 140	_	_	-	_	_	_	0	0	KB7
ISO 125, 4-hole	N32 (DIN 5480)	A4VS 40	-	_	_	_	0	0	•	0	K31
ISO 140, 4-hole	N40 (DIN 5480)	A4FO 71 / A4VS 71	_	-	-	_	•	•	•	0	K33
ISO 160, 4-hole	N50 (DIN 5480)	A4FO 125 / A4VS 125, 180	_	-	-	_	_	•	•	0	K34
ISO 224, 4-hole	N60 (DIN 5480)	A4FO 250 / A4VS 250	_	-	-	_	_	-	•	0	K35
ISO 315, 8-hole	N80 (DIN 5480)	A4FO 500 / A4VS 500	-	-	-	_	_	_	_	0	K43
with through drive share	ft, without hub, without ac	lapter flange, with cover plate	_	_	_	_	0	•	•	0	K99

Technical Data

Fluid

To review the application of A4FO pumps with the selected hydraulic fluid, detailed fluid compatibility and application data can be found in data sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable hydraulic fluids) and RE 90223 (fire resistant fluids, HF).

When using HF- or environmentally acceptable hydraulic fluids possible limitations for the technical data have to be taken into consideration. If necessary please consult our technical department (please indicate type of the hydraulic fluid used for your application on the order sheet).

Sizes 16...40 of fixed pump A4FO are not suitable for operation with HFA, HFB or HFC-fluids.

Operating viscosity range

In order to optain optimum efficiency and service life, we recommend that the operating viscosity (at operating temperature) be selected from within the range:

$$v_{\rm opt}$$
 = operating viscosity 16...36 mm²/s

referred to the tank temperature (open circuit).

Viscosity limits

The limiting values for viscosity are as follows:

Sizes 16...40

 $v_{min} = 5 \text{ mm}^2/\text{s},$

short term at a max. permissible temperature of $t_{max} = 115$ °C

 $v_{\text{max}} = 1600$, short term on cold start ($t_{\text{min}} = -40$ °C)

Sizes 71...500

 $v_{min} = 10 \text{ mm}^2/\text{s},$

short term at a max. permissible leakage oil temp. of $t_{max} = 90^{\circ}$

 $v_{max} = 1000 \text{ mm}^2/\text{s}$, short term on cold start ($t_{min} = -25^{\circ}\text{C}$)

Please note that the max. fluid temperature is also not exceeded in certain areas (for instance bearing area).

At temperatures of -25°C up to -40°C special measures may be required for certain installation positions. Please contact us.

Notes on the selection of the hydraulic fluid

In order to select the correct fluid, it is necessary to know the operating temperature in the tank (open circuit) in relation to the ambient temperature.

The hydraulic fluid should be selected so that within the operating temperature range, the operating viscosity lies within the optimum range (ν_{opt}) (see shaded section of the selection diagram). We recommend that the highest possible viscosity range should be chosen in each case.

Example: At an ambient temperature of X°C the operating temperature is 60°C. Within the operating viscosity range (ν_{opt} ; shaded area), this corresponds to viscosity ranges VG 46 or VG 68. VG 68 should be selected.

Important: The leakage oil (case drain oil) temperature is influenced by pressure and pump speed and is always higher than the tank temperature. However, at no point in the circuit may the temperature exceed 115°C for sizes 16...40 or 90°C for sizes 71...500.

If it is not possible to comply with the above conditions because of extreme operating parameters or high ambient temperatures please consult us.

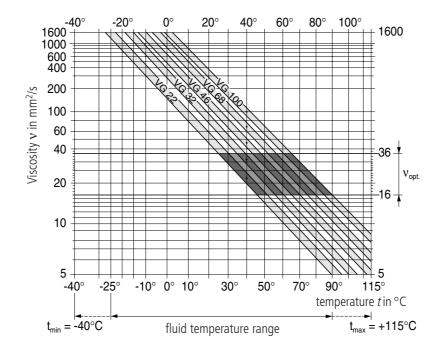
Filtration

The finer the filtration the better the achieved cleanliness level of the pressure fluid and the longer the life of the axial piston unit.

To ensure the functioning of the axial piston unit a minimum cleanliness level of

9 to NAS 1638

18/15 to ISO/DIS 4406 is necessary.


At very high temperatures of the hydraulic fluid (90°C to max. 115°C, not permissible for sizes 71...500) at least cleanliness level

8 to NAS 1638

17/14 to ISO/DIS 4406 is necessary.

If above mentioned grades cannot be maintained please consult us.

Selection diagram

Sizes 16...40

Working pressure range inlet

Absolut pressure at port S (suction port)

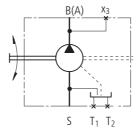
Pabs. min	_ 0,8 bar
Dahe may	2 bar

Working pressure range outlet

Maximum pressure at port A or B (pressure data to DIN 24312)

Nominal pressure p _N	_ 400 bar
Peak pressure p _{max}	_ 450 bar

Note:


When mounting further pumps at the through drive of the A4FO the max. input torque of the drive shaft has not to be exceeded (as to page 15). This may necessitate a limitation of the max. admissible pressure values.

Direction of flow

	clockwise operation	anti-clockwise operation
Sizes 1640	S to B	S to A

Symbol

A, B service line port
S suction port
T₁, T₂ drain port
(plugged)
x₃ gauge port

Case drain pressure

Perm. case drain pressure (housing pressure)

 p_L ______ 2 bar abs.

The leakage oil chamber is connected to the suction chamber. A case drain line is therefore not necessary.

Sizes 71...500

Working pressure range inlet

Absolut pressure at port S (suction port)

P _{abs. min}	0,8 bar
P _{abs. max}	30 bar

Working pressure range outlet

Maximum pressure at port A or B (pressure data to DIN 24312)

Nominal pressure p _N	350 bar
Peak pressure p _{max}	400 bar

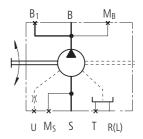
Flushing of the bearings (Sizes 125...500)

For informations about operating conditions, flushing quantities and notes on bearing flushing see data sheet RE 92 050 (A4VSO).

Direction of flow

	clockwise operation	anti-clockwise operation
Sizes 71500	S to B	S to B

Symbol

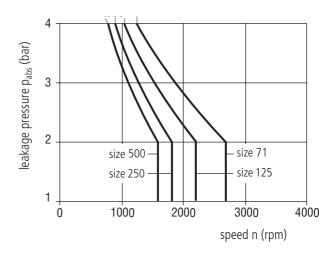

B, B₁ service line port S suction port

T, R(L) drain port

(1 port plugged)

M_B gauge port working pressure

M_S gauge port suction pressure U flushing port (sizes 125...500)


Leakage pressure

The max. permissible leakage pressure (housing pressure) is dependent on speed (see diagram). The pressure in the housing must be equal to or greater than the external pressure on the shaft sealing ring.

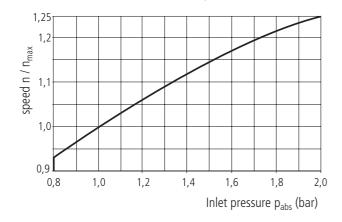
Max. leakage pressure (housing pressure)

p_L _______4 bar abs.

A case drain line to the tank is necessary.

Technical Data

Table of values (theoretical values, without considering η_{mh} and η_{v} : values rounded)


Size			16	22	28	40	71	125	250/H*	500/H*
Displacement	V_g	cm ³	16	22	28	40	71	125	250	500
Max. speed ¹)	n _{max}	rpm	4000	3600	3000	2750	2200	1800	1500 / 1900	1320/1500
Max. permissible speed (speed limit) with increased inlet pressure	n _{max perm.}	rpm	4800	4500	3750	3400	2700	2200	1800/2100	1600/1800
Output flow at n _{max} ²)	$q_{V max}$	L/min	62	77	81	107	152	218	364/461	640/728
Power at $q_{V \text{ max}}$: $\Delta p = 400 \text{ bar}$	P_{max}	kW	43	53	56	73	91³)	131 ³)	219/277 ³)	385/437 ³)
Max. torque at $\Delta p = 400$ bar	T _{max}	Nm	102	140	178	254	395³)	696 ³)	1391³)	2783 ³)
Case volume		L	0,3	0,3	0,3	0,4	2,0	3,0	7,0	11,0
Moment of inertia, about drive axis	J	kgm ²	0,0017	0,0017	0,0017	0,0030	0,0121	0,0300	0,0959	0,3325
Weight (approx.)	т	kg	13,5	13,5	13,5	16,5	34	61	120	220

¹⁾ The values shown are valid for an absolute pressure (p_{abs}) of 1 bar at the suction inlet S and when operated on mineral oil.

H*: High-speed-design

Maximum permissible speed (speed limit)

Maximum permissible speed with increased inlet pressure p_{abs} at suction port S (note: max. perm. speed $n_{max\,perm}$ (speed limit))

Calculation of size

Flow
$$q_v = \frac{V_g \bullet n \bullet \eta_v}{1000} \qquad \qquad \text{in L/min}$$

$$Torque \qquad T = \ \, \frac{1,59 \, \bullet \, V_g \, \bullet \, \Delta p}{100 \, \bullet \, \eta_{mh}} = \frac{V_g \, \bullet \, \Delta p}{20 \, \bullet \, \pi \, \bullet \, \eta_{mh}} \qquad \qquad \text{in Nm}$$

$$Power \qquad P = \frac{T \bullet n}{9549} \quad = \frac{2 \, \pi \bullet T \bullet n}{60\,000} \, = \frac{q_v \bullet \Delta p}{600 \bullet \eta_t} \qquad \text{in kW}$$

 $V_{\rm g}~=~{\rm displacement~per~revolution~in~cm^3}$

 $\Delta p = differential pressure in bar$

n = speed in rpm

 $\eta_v = \text{volumetric efficiency}$

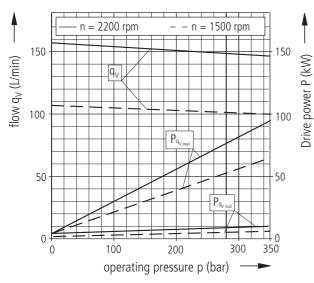
 η_{mh} = mechanical-hydraulic efficiency

 η_t = overall efficiency

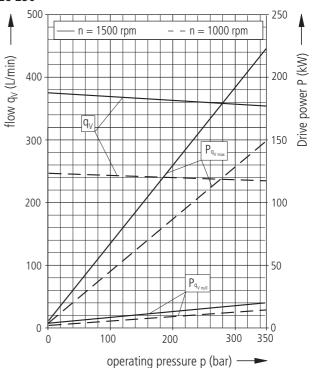
Input drive

Permissible axial and radial force on drive shaft

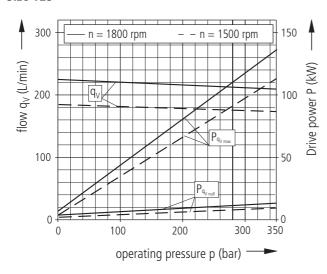
Size				16	22	28	40
Distance of F _q (from shaft collar)	F _q \downarrow	a	mm	17,5	17,5	17,5	17,5
a, k		b	mm	30	30	30	30
	a, b, c	С	mm	42,5	42,5	42,5	42,5
max. permissible radial force at distance a		$F_{q max}$	N	2800	2500	2050	3600
	b	$F_{q max}$	N	1600	1400	1150	2891
	С	$F_{q max}$	N	1150	1000	830	2416
max. permissible axial force $F_{ax} = F_{ax}$		- F _{ax max}	N	1557	1557	1557	2120
	¥	+ F _{ax max}	N	417	417	417	880

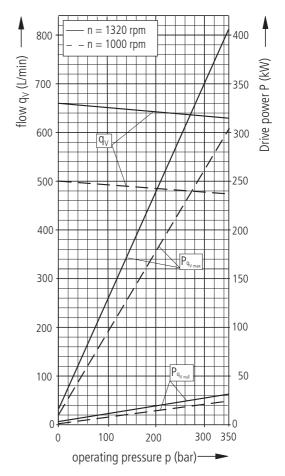

Size			71	125	250	500
Max. axial force at housing pressure p_{max} 1 bar abs.	± F _{ax ma}	_x N	1400	1900	3000	4000
Max. axial force at housing pressure p_{max} 4 bar abs.	± F _{ax} ← → − − + F _{ax ma}	x N	810	1050	1850	2500
	x/2 x/2 - F _{ax ma.}	N	1990	2750	4150	5500
Max. shearing force	X F _{q max}	N	1700	2500	4000	5000

²) 3 % volumetric loss included


 $^{^{3}}$) $\Delta p = 350 \text{ bar}$

Input Power and Flow




Size 250

Size 125

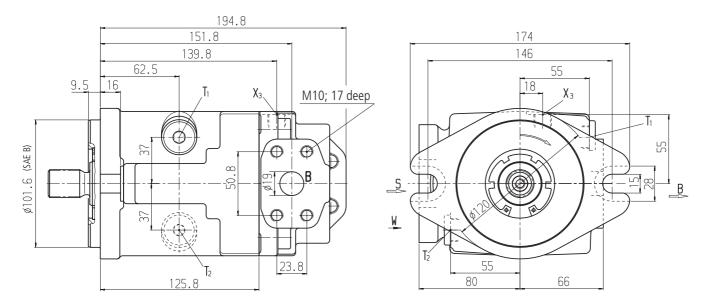
Size 500

Total efficiency:

$$\eta_t = \frac{q_V \bullet p}{P_{q_{V \text{ max}}} \bullet 600}$$

Volumetric efficiency:

$$\eta_{v} = \frac{q_{V}}{q_{V, \text{ theor}}}$$


(Fluid: hydraulic oil ISO VG 46 DIN 51519, t = 50°C)

Unit Dimensions, Sizes 16, 22, 28

Prior to finalising your design, please obtain a certified drawing.

Clockwise operation

(port plate is rotated via 180° for anti-clockwise operation)

Connections

B (A) Service line ports

S Suction port

 T_1 , T_2 Case drain port, oil filling

x₃ Gauge port

SAE $^{3}/_{4}$ " 420 bar

(6000 psi) high pressure series

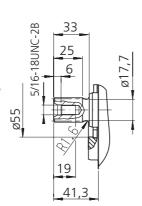
SAE $1^{1}/_{2}$ " 35 bar

(500 psi) standard series

M18x1,5; 12 deep

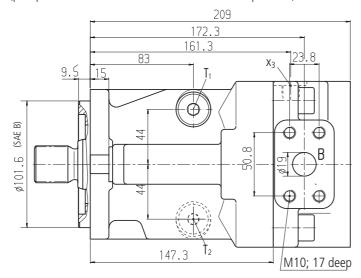
M14x1,5; 12 deep

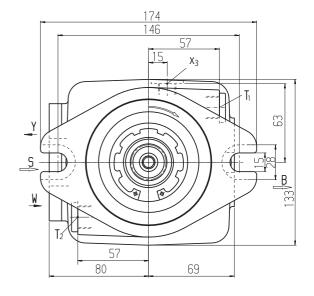
M12; 18 deep


M35.7
69.9

View W

Shaft ends


S


Splined shaft SAE ⁷/₈"(SAE B), pressure angle 30°, 13 teeth, 16/32 Pitch, flat root, side fit, tolerance class 5 ANSI B92.1a-1976

Clockwise operation

(port plate is rotated via 180° for anti-clockwise operation)

View W

Connections

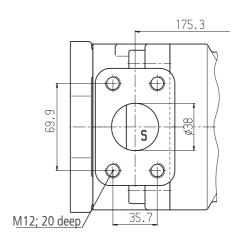
B (A) Service line ports

S Suction port

 T_1 , T_2 Case drain port, oil filling

x₃ Gauge port

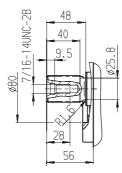
SAE ³/₄" 420 bar


(6000 psi) high pressure series

SAE $1^{1}/_{2}$ " 35 bar

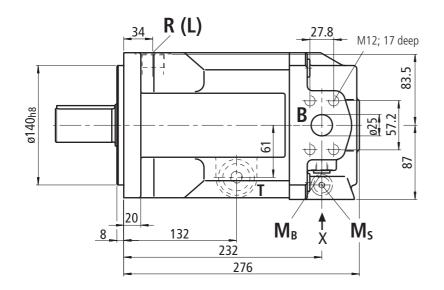
(500 psi) standard series

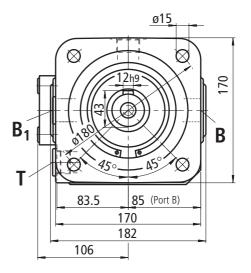
M18x1,5; 12 deep


M14x1,5; 12 deep

Shaft ends

Т


Splined shaft SAE 1¹/₄"(SAE C) pressure angle 30°, 14 teeth, 12/24 Pitch flat root side fit, tolerance class 5 ANSI B92.1a-1976

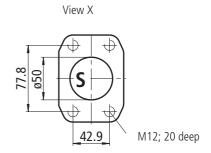


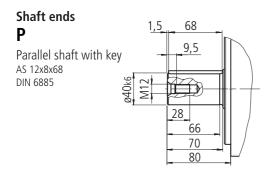
Unit Dimensions, Size 71

Prior to finalising your design, please obtain a certified drawing.

Clockwise and anti-clockwise operation

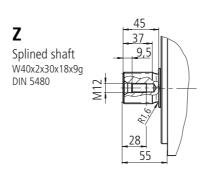
Connections

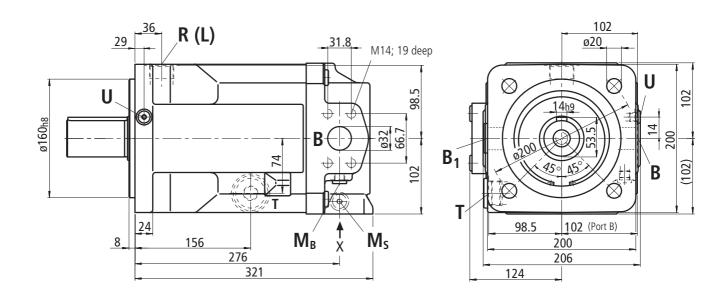

 M_B


 M_{S}

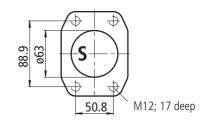
В Service line port SAE 1" (high pressure series) 2nd service line port SAE 1" (high pressure series) B_1 (plugged with a flange) S Suction port SAE 2" (standard series) R (L) Case drain port, oil filling M27x2 Τ Oil drain (plugged) M27x2

M14x1,5

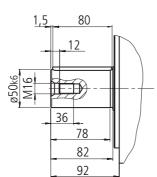

M14x1,5

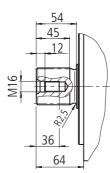


Gauge port operating pressure (plugged)

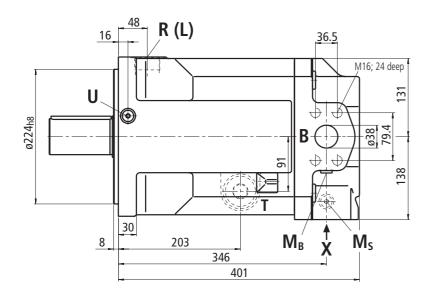

Gauge port suction pressure (plugged)

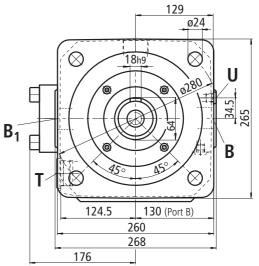
Clockwise and anti-clockwise operation


View X


Connections

В	Service line port	SAE 1 ¹ / ₄ "	(high pressure series)
B ₁	2nd service line port (plugged with a flange)	SAE 1 ¹ / ₄ "	(high pressure series)
S	Suction port	SAE 2 1/2"	(standard series)
R (L)	Case drain port, oil filling	M33x2	
T	Oil drain (plugged)	M33x2	
M_{B}	Gauge port operating pressure (plugged)	M14x1,5	
M_S	Gauge port suction pressure (plugged)	M14x1,5	
U	Flushing port (bearing flushing) (plugged)	M14x1,5	

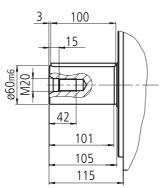


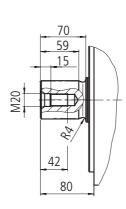


Unit Dimensions, Size 250

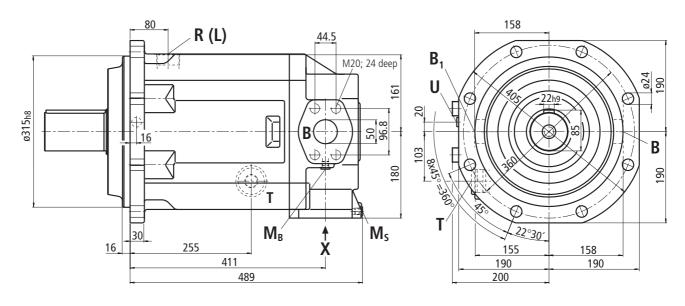
Prior to finalising your design, please obtain a certified drawing.

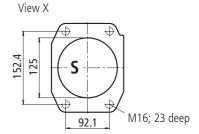
Clockwise and anti-clockwise operation



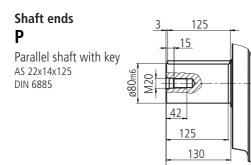

Connections

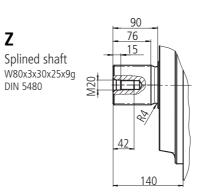
Connec	uons		
В	Service line port	SAE 1 ¹ / ₂ "	(high pressure series)
B ₁	2nd service line port (plugged with a flange)	SAE 1 ¹ / ₂ "	(high pressure series)
S	Suction port	SAE 3"	(standard series)
R (L)	Case drain port, oil filling	M42x2	
T	Oil drain (plugged)	M42x2	
M_{B}	Gauge port operating pressure (plugged)	M14x1,5	
M_S	Gauge port suction pressure (plugged)	M14x1,5	
U	Flushing port (bearing flushing) (plugged)	M14x1,5	





Clockwise and anti-clockwise operation





Connections

В	Service line port	SAE 2" (high pressure series)
B ₁	2nd service line port (plugged with a flange)	SAE 2" (high pressure series)
S	Suction port	SAE 5" (standard series)
R (L)	Case drain port, oil filling	M48x2
T	Oil drain (plugged)	M48x2
M_{B}	Gauge port operating pressure (plugged)	M18x1,5
M_S	Gauge port suction pressure (plugged)	M18x1,5
U	Flushing port (bearing flushing) (plugged)	M18x1,5

180

Unit Dimensions, Through Drives

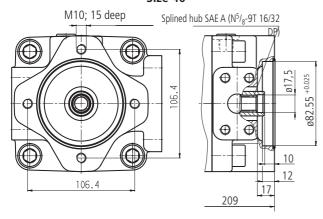
Prior to finalising your design, please obtain a certified drawing.

Through drive SAE A (K01)

Sizes 16, 22, 28

M10; 15 deep

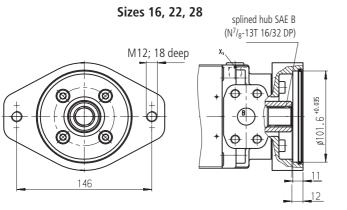
X₃


(N⁵/₈-9T 16/32 DP)

A DEEP SPIN OF THE PROPERTY OF T

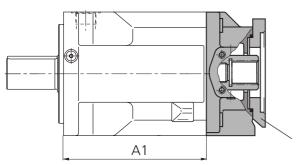
suitable for connection of:

- gear pump G2 (RE 10030)
- -variable pump A10VSO10 (RE 92713)
- variable pump A10VSO18 (RE 92712)


Size 40

suitable for connection of:

- gear pump G2 (RE 10030)
- variable pump A10VSO10 (RE 92713)
- variable pump A10VSO18 (RE 92712)


Through drive SAE B (K02)

suitable for connection of:

- fixed pump A4FO 16, 22, 28
- gear pump G3 (RE 10039)
- gear pump G4 (RE 10042)
- variable pump A10VG18 (RE 92750)
- variable pump A10VO28 (RE 92701/
 - RE 92703)

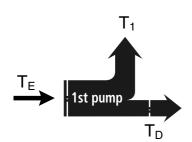
Through drive sizes 71...500 (see RE 92050, A4VSO)

Size	71	125	250	500	
A1	194	231	293	335	

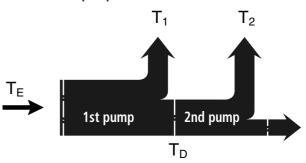
Through drive dimensions see RE 92050 (A4VSO)

Permissible Input and Through Drive Rotation Torques

Size			16	22	28	40
Corner torque (at $\Delta p = 400 \text{ bar})^{-1}$) T_{max} Nm			102	140	178	254
Max. perm. through	drive torque ²)	T _{D perm.} Nm	192	192	192	314
Max. perm. input torque ³)	shaft end S (SAE J744)	T _{E perm.} Nm	192 (SAE B, W ⁷ / ₈ ")	192 (SAE B, W ⁷ / ₈ ")	192 (SAE B, W ⁷ / ₈ ")	-
	shaft end T (SAE J744)	T _{E perm.} Nm	_	-	-	602 (SAE C, W1 ¹ / ₄ ")
C:			71	125	250	F00


Size				71	125	250	500
Corner torque (at Δρ	$0 = 350 \text{ bar})^{-1}$	T_{max}	Nm	395	696	1391	2783
Max. perm. through	drive torque ²)	T _{D perm.}	Nm	395	696	1391	2783
Max. perm. input torque ³)	shaft end Z (DIN 5480)	T _{E perm.}	Nm	790 (W40)	1392 (W50)	2782 (W60)	5566 (W80)
	shaft end P (keyed shaft, DIN 6885)	T _{E perm.}	Nm	700 (AS12x8x68)	1392 (AS14x9x80)	2300 (AS18x11x100)	5200 (AS22x14x125)

¹⁾ efficiency not taken into consideration


Code explanations

		max. permissible through drive torque max. permissible input torque at the drive shaft			in Nm in Nm
T ₁	=	take off torque at 1st pump	=	$\frac{1,59 \bullet V_{g1} \bullet \Delta p_1}{100 \bullet h_{mh}}$	in Nm
T ₂	=	take off torque at 2nd pump	=	$\frac{1,59 \bullet V_{g2} \bullet \Delta p_2}{100 \bullet h_{mh}}$	in Nm
V_{q1}	=	pump displacement per rev. 1st pump		in cm ³	
V_{g1} V_{g2}	=	pump displacement per rev. 2nd pump		in cm ³	
Δp_1	=	differential pressure 1st pump			in bar
Δp_2	=	differential pressure 2nd pump			in bar
η_{mh}	=	mechanical-hydraulic efficiency			

Single pump

Combination pump

 $^{^{2}}$) note: max. perm. input torque $T_{E\;perm.}$ may not be exceeded

³) drive shaft without side load

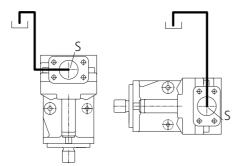
Installation and Commissioning Guidelines, Sizes 16...40

General

At start-up and during operation the pump housing has imperatively to be filled up with hydraulic fluid (filling of the case chamber). Start-up has to be carried out at low speed and without load till the system is completely bleeded.

At a longer standstill the case may discharge via operating line. At new start-up a sufficient filling of the housing has to be granted.

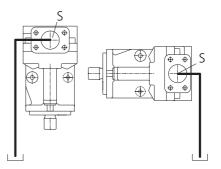
The min. suction pressure at port S should not fall below 0,8 bar absolute.


Installation position

Shaft horizontally resp. to the bottom. When mounting on top of the tank the installation position "shaft horizontally, suction port to the bottom" is not admssible!

Installation below tank level

Pumps below min. oil level in the tank (standard)


- → Fill up axial piston pump before start-up via highest positioned case drain port
- → Recommendation: Fill up suction lines
- → Operate pump at low speed (igniton speed) till pump system is completely filled up
- → Minimum immersion depth of the suction line or drain line in the tank: 200 mm (relative to the min. oil level in the tank).

Installation on top of tank level

Pump on top of min. oil level in the tank

- → Actions as installation below tank level
- → Installation positions "shaft to the top" and "shaft horizontally, suction port at bottom" are not admissible (at standstill the pump case is bleeding via suction line).
- → note: max. perm. suction pipe lenght h_{max} = 800 mm min. admissible presssure at port S (min. suction pressure)

Installation and Commissioning Guidelines, Sizes 71...500

see RE 92050 (A4VSO)

Bosch Rexroth AG
Mobile Hydraulics
Product Segment Axial Piston Units
Elchingen Plant
Glockeraustrasse 2
89275 Elchingen, Germany
Telephone +49 (0) 73 08 82-0
Facsimile +49 (0) 73 08 72 74
info.brm-ak@boschrexroth.de
www.boschrexroth.com/brm

Horb Plant An den Kelterwiesen 14 72160 Horb, Germany Telephone +49 (0) 74 51 92-0 Facsimile +49 (0) 74 51 82 21 © 2003 by Bosch Rexroth AG, Mobile Hydraulics, 89275 Elchingen All rights reserved. No part of this document may be reproduced or stored, processed, duplicated or circulated using electronic systems, in any form or by any means, without the prior written authorization of Bosch Rexroth AG. In the event of contravention of the above provisions, the contravening party is obliged to pay compensation.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The given information does not release the user from the obligation of own judgement and verification. It must be remembered that our products are subject to a natural process of wear and aging.