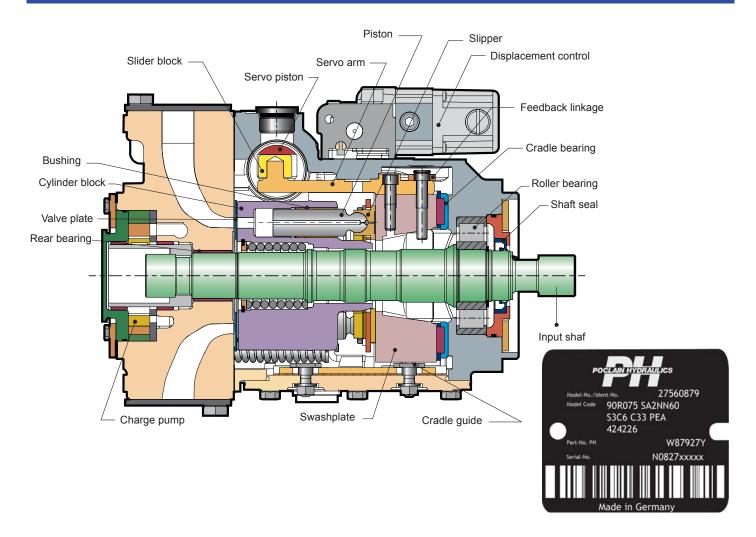

# P90 VARIABLE DISPLACEMENT PUMP




TECHNICAL CATALOG





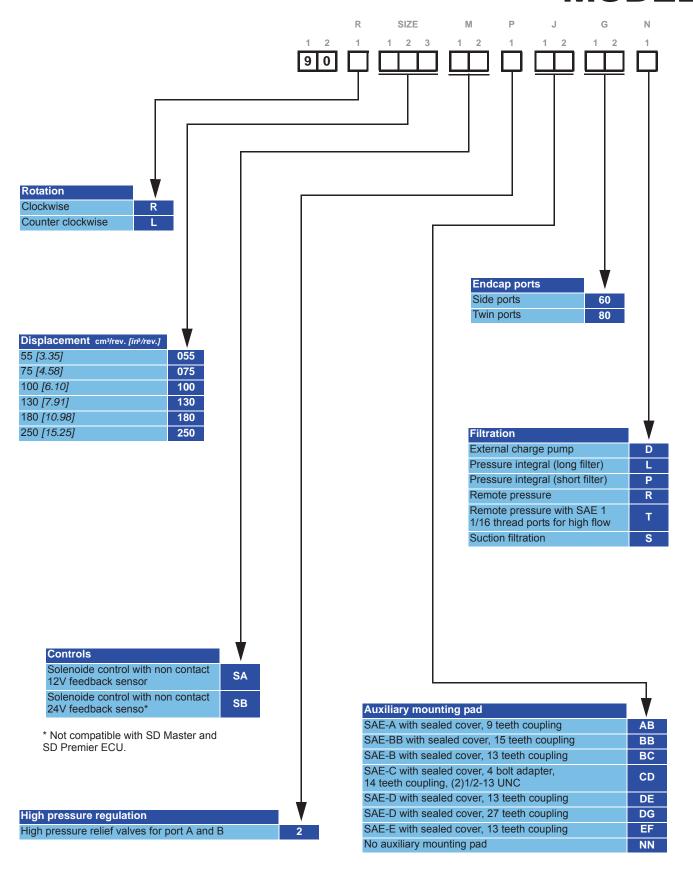
#### Design



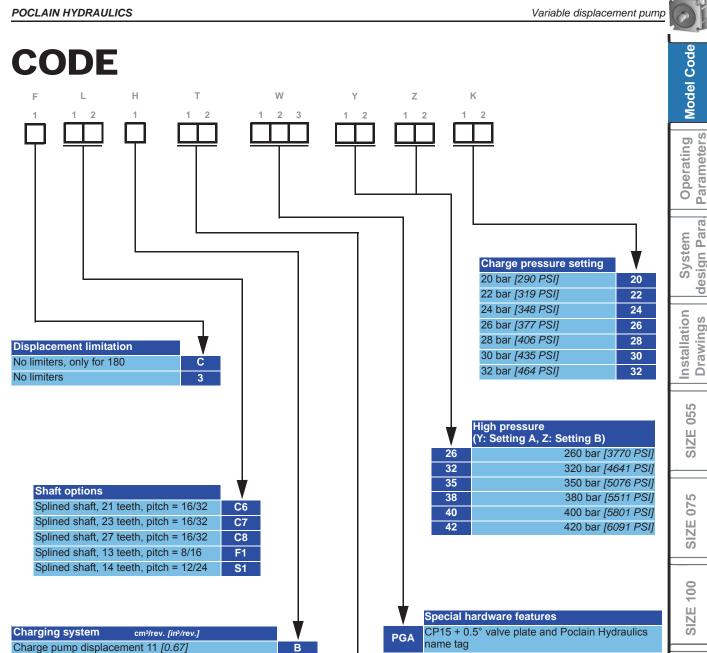
| Factures and entions                                   | Unit                            | Frame                                        |                                                   |                      |                    |                    |                         |  |  |  |
|--------------------------------------------------------|---------------------------------|----------------------------------------------|---------------------------------------------------|----------------------|--------------------|--------------------|-------------------------|--|--|--|
| Features and options                                   | Onit                            | 055                                          | 075                                               | 100                  | 130                | 180                | 250                     |  |  |  |
| Displacement                                           | cm³/rev<br>[in³/rev.]           | 55<br>[3.35]                                 | 75<br>[4.58]                                      | 100<br>[6.10]        | 130<br>[7.91]      | 180<br>[10.98]     | 250<br>[15.25]          |  |  |  |
| Flow at rated speed                                    | L/min<br>[US gal/min]           | 215<br>[57]                                  | 270<br>[71]                                       | 330<br>[87]          | 403<br>[106]       | 468<br>[124]       | 575<br>[152]            |  |  |  |
| Torque at maximum displacement                         | N.m/bar<br>[lbf.in/1000 PSI]    | 0.88<br>[530]                                | 1.19<br><i>[730]</i>                              | 1.59<br><i>[970]</i> | 2.07<br>[1 260]    | 2.87<br>[1 750]    | 3.97<br>[2 <i>4</i> 33] |  |  |  |
| Mass moment of inertia of rotating component           | kg.m²<br>[slug.ft²]             | 0.0060<br>[0.0044]                           | 0.0096<br>[0.0071]                                | 0.0150<br>[0.0111]   | 0.0230<br>[0.0170] | 0.0380<br>[0.0280] | 0.0650<br>[0.0479]      |  |  |  |
| Weight                                                 | kg [lb] 40 [88] 49 [108] 68 [15 |                                              | 68 [150]                                          | 88 [194]             | 136 [300]          | 154 [340]          |                         |  |  |  |
| Mounting (per SAE J744)                                |                                 | С                                            | С                                                 | С                    | D                  | Е                  | E                       |  |  |  |
| Rotation                                               |                                 |                                              | Clo                                               | ckwise or Co         | unterclockwi       | se                 |                         |  |  |  |
| Main ports: 4-bolt split-flange (per SAE J518 code 62) | mm<br>[in]                      | 25.4<br>[1.0]                                | 25.4<br>[1.0]                                     | 25.4<br>[1.0]        | 31.75<br>[1.25]    | 38.1<br>[1.5]      | 38.1<br>[1.5]           |  |  |  |
| Main port configuration                                |                                 |                                              | Radial or axia                                    | al                   |                    | Radial             |                         |  |  |  |
| Case drain ports (SAE O-ring boss)                     | UNF thread (in.)                | 1.0625-12                                    | 1.0625-12                                         | 1.0625-12            | 1.625-12           | 1.625–12           | 1.625-12                |  |  |  |
| Other ports                                            |                                 |                                              |                                                   | SAE O-rir            | ig boss.           |                    |                         |  |  |  |
| Shafts                                                 |                                 | ;                                            | Splined, straig                                   | ht keyed, and        | I tapered sha      | afts available     |                         |  |  |  |
| Auxiliary mounting SAE                                 |                                 | SAE A, B, C SAE A, B, C, D SAE A, B, C, D, E |                                                   |                      |                    |                    |                         |  |  |  |
| Installation position                                  |                                 | representat                                  | is recommend<br>ive for noncor<br>ydraulic fluid. |                      |                    |                    |                         |  |  |  |

23/09/2016






## **CONTENT**


| IENI                        | 000                  |
|-----------------------------|----------------------|
| MODEL CODE 4                | Model Coc            |
| OPERATING PARAMETERS 9      | Operating Parameters |
| SYSTEM DESIGN PARAMETERS 13 | System design Para.  |
| INSTALLATION DRAWINGS 17    | Installation         |
| FRAME SIZE 055              | SIZE 055             |
| FRAME SIZE 075 23           | SIZE 075             |
| FRAME SIZE 100 27           | SIZE 100             |
| FRAME SIZE 130 29           | SIZE 130             |
| FRAME SIZE 180 33           | SIZE 180             |
| FRAME SIZE 250 37           | SIZE 250             |
| OPTIONS 43                  | Options              |



### **MODEL**







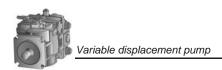
| Charging system cm³/rev. [in³/rev.]  Charge pump displacement 11 [0.67]  Charge pump displacement 14 [0.85]  Charge pump displacement 17 [1.03]  Charge pump displacement 20 [1.22]  Charge pump displacement 26 [1.58]  F  Charge pump displacement 34 [2.07]  Charge pump displacement 47 [2.86]  Charge pump displacement 65 [3.96]  External charge pump with internal charge pressure relief valve with auxiliary mounting pad  External charge pump with internal charge pressure relief valve without auxiliary mounting pad |                                     |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---|
| Charge pump displacement 14 [0.85] Charge pump displacement 17 [1.03] Charge pump displacement 20 [1.22] E Charge pump displacement 26 [1.58] Charge pump displacement 34 [2.07] Charge pump displacement 47 [2.86] Charge pump displacement 45 [3.96] External charge pump with internal charge pressure relief valve with auxiliary mounting pad External charge pump with internal charge pressure                                                                                                                               | Charging system cm³/rev. [in³/rev.] |   |
| Charge pump displacement 17 [1.03]  Charge pump displacement 20 [1.22]  Charge pump displacement 26 [1.58]  Charge pump displacement 34 [2.07]  Charge pump displacement 47 [2.86]  Charge pump displacement 65 [3.96]  External charge pump with internal charge pressure relief valve with auxiliary mounting pad  External charge pump with internal charge pressure                                                                                                                                                             | Charge pump displacement 11 [0.67]  | В |
| Charge pump displacement 20 [1.22]  Charge pump displacement 26 [1.58]  Charge pump displacement 34 [2.07]  Charge pump displacement 47 [2.86]  Charge pump displacement 65 [3.96]  External charge pump with internal charge pressure relief valve with auxiliary mounting pad  External charge pump with internal charge pressure                                                                                                                                                                                                 | Charge pump displacement 14 [0.85]  | С |
| Charge pump displacement 26 [1.58]  Charge pump displacement 34 [2.07]  Charge pump displacement 47 [2.86]  Charge pump displacement 65 [3.96]  External charge pump with internal charge pressure relief valve with auxiliary mounting pad  External charge pump with internal charge pressure                                                                                                                                                                                                                                     | Charge pump displacement 17 [1.03]  | D |
| Charge pump displacement 34 [2.07]  Charge pump displacement 47 [2.86]  Charge pump displacement 65 [3.96]  External charge pump with internal charge pressure relief valve with auxiliary mounting pad  External charge pump with internal charge pressure                                                                                                                                                                                                                                                                         | Charge pump displacement 20 [1.22]  | E |
| Charge pump displacement 47 [2.86]  Charge pump displacement 65 [3.96]  External charge pump with internal charge pressure relief valve with auxiliary mounting pad  External charge pump with internal charge pressure                                                                                                                                                                                                                                                                                                             | Charge pump displacement 26 [1.58]  | F |
| Charge pump displacement 65 [3.96]  External charge pump with internal charge pressure relief valve with auxiliary mounting pad  External charge pump with internal charge pressure                                                                                                                                                                                                                                                                                                                                                 | Charge pump displacement 34 [2.07]  | Н |
| External charge pump with internal charge pressure relief valve with auxiliary mounting pad  External charge pump with internal charge pressure                                                                                                                                                                                                                                                                                                                                                                                     | Charge pump displacement 47 [2.86]  | J |
| relief valve with auxiliary mounting pad  External charge pump with internal charge pressure                                                                                                                                                                                                                                                                                                                                                                                                                                        | Charge pump displacement 65 [3.96]  | K |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     | L |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     | N |

Ports (A) Servo

Without restrictor

Restrictor 0,8 mm [0.031 in]

Restrictor 1 mm [0.039 in]


(B) Servo

33

**A4** 

P1

|     | name tag                                                                                                                      |
|-----|-------------------------------------------------------------------------------------------------------------------------------|
| PEA | CP15 + 0.5° valve plate, speed sensor KPPG156 and Poclain Hydraulics name tag                                                 |
| PGB | CP30 + 4.3° valve plate (low noise) and Poclain Hydraulics name tag                                                           |
| PEB | CP30 + 4.3° valve plate (low noise), speed sensor KPPG 156 and Poclain Hydraulics name tag                                    |
| PGC | CP150 + 1.5°; additional springs on swash plate return to neutral and Poclain Hydraulics name tag                             |
| PEC | CP150 + 1.5°; additional springs on swash plate return to neutral and Poclain Hydraulics name tag with a speed sensor KPPG156 |
|     |                                                                                                                               |



#### Possible configurations

| <ul> <li>Standard - Not available</li> </ul> |
|----------------------------------------------|
|----------------------------------------------|

|        | Rotation (R1)     |     |     |     |     |     |     |
|--------|-------------------|-----|-----|-----|-----|-----|-----|
| Option | Description       | 055 | 075 | 100 | 130 | 180 | 250 |
| R      | Clockwise         | •   | •   | •   | •   | •   | •   |
| L      | Counter clockwise | •   | •   | •   | •   | •   | •   |

|        | Controls (M)                                          |     |     |     |     |     |     |
|--------|-------------------------------------------------------|-----|-----|-----|-----|-----|-----|
| Option | Description                                           | 055 | 075 | 100 | 130 | 180 | 250 |
| SA     | Solenoid control 12V with non contact feedback sensor | •   | •   | •   | •   | •   | •   |
| SB     | Solenoid control 24V with non contact feedback sensor | •   | •   | •   | •   | •   | •   |

|        | High pressure regulation (                   | P)  |     |     |     |     |     |
|--------|----------------------------------------------|-----|-----|-----|-----|-----|-----|
| Option | Description                                  | 055 | 075 | 100 | 130 | 180 | 250 |
| 2      | High pressure relief valves for port A and B | •   | •   | •   | •   | •   | •   |

|        | Auxiliary mounting pad (J)                                                   |     |     |     |     |     |     |
|--------|------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|
| Option | Description                                                                  | 055 | 075 | 100 | 130 | 180 | 250 |
| AB     | SAE-A with sealed cover, 9 teeth coupling                                    | •   | •   | •   | •   | •   | •   |
| BB     | SAE-BB with sealed cover, 15 teeth coupling                                  | •   | •   | •   | •   | •   | •   |
| BC     | SAE-B with sealed cover, 13 teeth coupling                                   | •   | •   | •   | •   | •   | •   |
| CD     | SAE-C with sealed cover, 4 bolt adapter,<br>14 teeth coupling, (2)1/2-13 UNC | •   | •   | •   | •   | •   | •   |
| DE     | SAE-D with sealed cover, 13 teeth coupling                                   | -   | -   | -   | •   | •   | •   |
| DG     | SAE-D with sealed cover, 27 teeth coupling                                   | -   | -   | -   | •   | •   | •   |
| EF     | SAE-E with sealed cover, 13 teeth coupling                                   | -   | -   | -   | -   | •   | •   |
| NN     | No auxiliary mounting pad                                                    | •   | •   | •   | •   | •   | •   |

|        | Endcap ports (G) |     |     |     |     |     |     |
|--------|------------------|-----|-----|-----|-----|-----|-----|
| Option | Description      | 055 | 075 | 100 | 130 | 180 | 250 |
| 60     | Side ports       | •   | •   | •   | -   | -   | -   |
| 80     | Twin ports       | •   | •   | •   | •   | •   | •   |

|        | Filtration (N)                                             |     |     |     |     |     |     |
|--------|------------------------------------------------------------|-----|-----|-----|-----|-----|-----|
| Option | Description                                                | 055 | 075 | 100 | 130 | 180 | 250 |
| D      | External charge pump                                       | •   | •   | •   | •   | •   | -   |
| L      | Pressure integral (long filter)                            | •   | •   | •   | •   | -   | -   |
| Р      | Pressure integral (short filter)                           | •   | •   | •   | •   | -   | -   |
| R      | Remote pressure                                            | •   | •   | •   | •   | -   | -   |
| Т      | Remote pressure with SAE 1 1/16 thread ports for high flow | -   | -   | -   | -   | •   | •   |
| S      | Suction filtration                                         | •   | •   | •   | •   | •   | •   |

|        | Displacement limitation (F) |     |     |     |     |     |     |
|--------|-----------------------------|-----|-----|-----|-----|-----|-----|
| Option | Description                 | 055 | 075 | 100 | 130 | 180 | 250 |
| С      | No limiters, only for 180   | -   | -   | -   | -   | •   | -   |
| 3      | No limiters                 | •   | •   | •   | •   | -   | •   |

|        | Shaft options                                                                |     |     |     |     |     |     |
|--------|------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|
| Option | Description                                                                  | 055 | 075 | 100 | 130 | 180 | 250 |
| C6     | Splined shaft, 21 teeth, pitch = 16/32                                       | •   | •   | •   | -   | -   | -   |
| C7     | Splined shaft, 23 teeth, pitch = 16/32                                       | -   | •   | •   | -   | -   | -   |
| C8     | Splined shaft, 27 teeth, pitch = 16/32Splined shaft, 27 teeth, pitch = 16/32 | -   | -   | -   | •   | •   | •   |
| F1     | Splined shaft, 13 teeth, pitch = 8/16Splined shaft, 13 teeth, pitch = 8/16   | -   | -   | •   | •   | •   | •   |
| S1     | Splined shaft, 14 teeth, pitch = 12/24                                       | •   | •   | •   | -   | -   | -   |

| Mile. |
|-------|
| 100   |
| L'A   |
| Par-  |
|       |

Parameters

Par

design

**Drawings** 

Model Code Standard - Not available Charging system (H) Option Description 055 075 100 130 180 250 Charge pump displacement 11 [0.67] С Charge pump displacement 14 [0.85] • • Operating D Charge pump displacement 17 [1.03] • . • \_ Е Charge pump displacement 20 [1.22] -• • \_ \_ \_ • • Charge pump displacement 26 [1.58] Н Charge pump displacement 34 [2.07] • • Charge pump displacement 47 [2.86] -1 • K Charge pump displacement 65 [3.96] • System External charge pump with internal charge pressure relief valve • External charge pump with internal charge pressure relief valve for units with N no auxiliary mounting pad Restrictors (T) Option 055 075 100 130 180 250 Ports ation (A) servo (B) servo 33 Without restrictors • • • • • • Install A4 Restrictor 0,8 mm [0.031 in] • • • • • P1 Restrictor 1 mm [0.039 in] 055 Special hardwre features (W) Option Description 055 075 100 130 180 250 IZE PGA CP15 + 0,5° valve plate and Poclain Hydraulics name tag • •  $\overline{S}$ CP15 + 0,5° valve plate and Poclain Hydraulics name tag PEA • • • with a speed sensor KPPG156 **PGB** CP30 + 4,3° and Poclain Hydraulics name tag (Low noise) CP30 + 4,3° and Poclain Hydraulics name tag with speed sensor KPPG 156 07 PEB • (Low noise) ZE CP150 + 1.5°; additional springs on swash plate return to neutral and Poclain **PGC** Hydraulics name tag S CP150 + 1.5°; additional springs on swash plate return to neutral and Poclain Hydraulics name tag with a speed sensor KPPG156 **PEC** • • 100 High pressure (Y: setting A; Z: setting B) ZE Option Description 055 075 100 130 180 250 S 26 260 bar . . • . . • 32 320 bar • • • 35 350 bar . 130 38 380 bar . • . . . . 40 • • . • • • 400 bar ZE 42 • • 420 bar . • •  $\overline{S}$ Charge pressure setting (K)

055

•

•

•

•

075

•

•

•

•

•

100

.

•

•

130

•

•

•

•

• S • •

250

•

180

•

•

•

•

•

Options

180

ZE

250

ZE S

Option Description

20 bar

22 bar

24 bar

26 bar

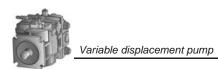
28 bar

30 bar

32 bar

20

22


24

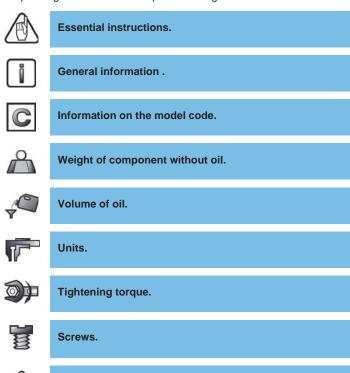
26

28

30

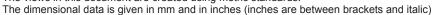
32




#### Methodology:

This document is intended for manufacturers of machines that incorporate Poclain Hydraulics products. It describes the technical characteristics of Poclain Hydraulics products and specifies installation conditions that will ensure optimum operation. This document includes important comments concerning safety. They are indicated in the following way:




Safety comment.

This document also includes essential operating instructions for the product and general information. These are indicated in the following way:



Information intended for Poclain-Hydraulics personnel.

The views in this document are created using metric standards.









## **OPERATING PARAMETERS**

| Operating peremeters        | I I mid                 |      |      | Fr   | ame size        |      |      |
|-----------------------------|-------------------------|------|------|------|-----------------|------|------|
| Operating parameters        | Unit                    | 055  | 075  | 100  | 130             | 180  | 250  |
| Input speed                 |                         |      |      |      |                 |      |      |
| Minimum                     |                         |      |      |      | 500             |      |      |
| Continuous                  | min <sup>-1</sup> (rpm) | 3900 | 3600 | 3300 | 3100            | 2600 | 2300 |
| Maximum                     | _                       | 4250 | 3950 | 3650 | 3400            | 2850 | 2500 |
| System pressure             |                         |      |      |      |                 |      |      |
| Rated                       |                         |      |      | 4.   | 20 [6000]       |      |      |
| Maximum                     | bar [PSI]               |      |      | 4    | 80 [7000]       |      |      |
| Minimum low loop            | _                       |      |      |      | 10 <i>[145]</i> |      |      |
| Inlet pressure (charge inle | t)                      |      |      |      |                 |      |      |
| Minimum (continuous)        | bar (abs.)              |      |      |      | 0.7 [9]         |      |      |
| Minimum (cold start)        | [in. Hg vac.]           |      |      |      | 0.2 [24]        |      |      |
| Case pressure               |                         |      |      |      |                 |      |      |
| Continuous                  | _ bar [PSI]             |      |      |      | 3 [43]          |      |      |
| Maximum (cold start)        | — bai [FSI]             |      |      |      | 5 [73]          |      |      |

#### **Overviews**

Maintain operating parameters within prescribed limits during all operating conditions. This section defines operating limits given in the table *Operating parameters*.

#### Input speed

**Minimum speed** is the lowest input speed recommended during engine idle condition. Operating below minimum speed limits the pump's ability to maintain adequate flow for lubrication and power transmission.

Continuous speed is the highest input speed recommended at full power condition. Operating at or below this speed should yield satisfactory product life.

Maximum speed is the highest operating speed permitted. Exceeding maximum speed reduces product life and can cause loss of hydrostatic power and braking capacity. Never exceed the maximum speed limit under any operating conditions.



Exceeding maximum speed may cause a loss of hydrostatic drive line power and braking capacity. You must provide a braking system, redundant to the hydrostatic transmission, sufficient to stop and hold the vehicle or machine in the event of hydrostatic drive power loss.

#### System pressure

System pressure is the differential pressure between system ports A and B. It is the dominant operating variable affecting hydraulic unit life. High system pressure, which results from high load, reduces expected life. System pressure must remain at or below continuous pressure during normal operation to achieve expected life.

Continuous pressure is the average, regularly occurring operating pressure. Operating at or below this pressure should yield satisfactory product life.

Maximum pressure is the highest intermittent pressure allowed. Maximum machine load should never exceed this pressure. For all applications, the load should move below this pressure.



All pressure limits are differential pressures referenced to low loop (charge) pressure. Substract low loop pressure from gauge readings to compute the differential.

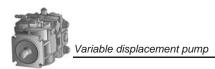
Model Code

Operating Parameters

System design Para

nstallation Drawings

SIZE 055


SIZE 075

SIZE 100

**SIZE 130** 

**SIZE 180** 

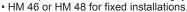
**SIZE 250** 



#### Case pressure

Under normal operating conditions, the maximum continuous case pressure must not exceed 3 bar [44 PSI]. Maximum allowable intermittent case pressure during cold start must not exceed 5 bar [73 PSI]. Size drain plumbing accordingly.




Operation with case pressure in excess of these limits may damage seals, gaskets, and/or housings, causing external leakage. Performance may also be affected since charge and system pressure are additive to case pressure.

| Fluid specifications            |                             |                                              |  |  |
|---------------------------------|-----------------------------|----------------------------------------------|--|--|
| Viscosity                       | Unit                        |                                              |  |  |
| Minimum                         | 2/ ( 0)                     | 7 [49]                                       |  |  |
| Continuous                      | mm²/sec (cSt) ————<br>[SUS] | 12-80 [70-370]                               |  |  |
| Maximum                         |                             | 1600 [7500]                                  |  |  |
| Temperature                     | Unit                        |                                              |  |  |
| Minimum                         |                             | -40 <i>[-40]</i>                             |  |  |
| Continuous                      | °C [°F]                     | 104 [220]                                    |  |  |
| Maximum                         |                             | 115 [240]                                    |  |  |
| Filtration                      |                             |                                              |  |  |
| Cleanliness                     |                             | 18/13 or better per ISO 4406                 |  |  |
| Efficiency (suction filtration) |                             | β <sub>35-45</sub> =75 (β <sub>10</sub> ≥2)  |  |  |
| Efficiency (charge filtration)  |                             | β <sub>15-20</sub> =75 (β <sub>10</sub> ≥10) |  |  |
| Recommended inlet screen size   |                             | 100-125 μm <i>[0.0039-0.0049 in]</i>         |  |  |
|                                 |                             |                                              |  |  |

#### **Hydraulic Fluids**

#### **General Recommendations**

Poclain hydraulics recommends the use of hydraulic fluids defined by the ISO 15380 and ISO 6743-4 standards. For temperate climates, the following types are recommended.



- HV 46 or HV 68 for mobile installations.
- · HEES 46 for mobile installations.

These specifications correspond to category 91H of the CETOP standard, parts 1, 2 and 3 of the DIN 51524 standard, and grades VG32, VG 46 and VG68 of the ISO 6743-4 standards.



It is also possible to use ATF, HD, HFB, HFC or HFD type hydraulic fluid upon Poclain Hydraulics specific approval of the components' operating conditions.

Standardized designations for the fluids

- Mineral fluids having specific antioxidant, anticorrosion and antiwear properties (HLP equivalent to DIN • HM : 51524 parts 1 and 2).
- HM mineral fluids providing improved temperature and viscosity properties (DIN 51524 part 3).
- HEES : Biodegradable fluids based on organic esters.

It is also possible to use a fluid that meets the biodegradability criteria and is compatible in the event of accidental food contact. The BIOHYDRAN FG 46 fluid designed by the company Total has undergone testing of its properties and performance on our test benches. Since this type of fluid has not yet been categorized, it is the responsibility of machine manufacturers to validate its compatibility with all of the components used in order to guarantee that the intended functions will be fulfilled (specifically the brakes' hold on a slope and emergency braking) and this for the desired life time of all equipment items.





For biodegradable fluids, consult your Poclain Hydraulics' application engineer



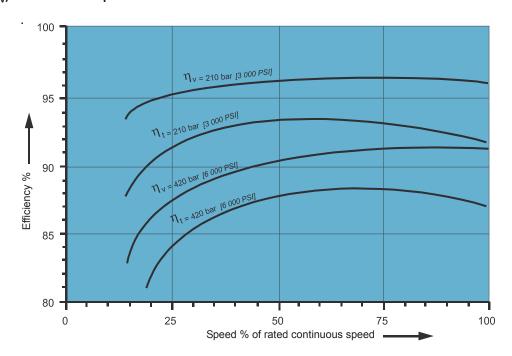
Class32 (ISO VG 32): Viscosity of 32 cSt at 40°C. Class46 (ISO VG 46): Viscosity of 46 cSt at 40°C. Class68 (ISO VG 68): Viscosity of 68 cSt at 40°C.



During operation, the temperature of the motors must be between 0°C [32°F] and 80°C [176°F]; the minimum and maximum temperatures may be exceeded momentarily by ± 20°C [± 68°F] for a duration of less than 30 minutes.

For all applications outside these limits, please consult with your Poclain Hydraulics' application engineer.

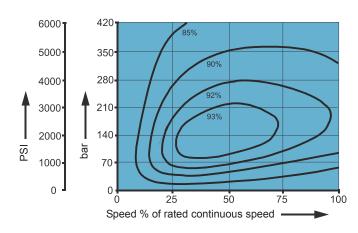
10 23/09/2016



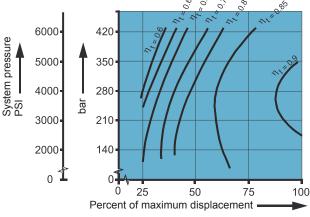

#### **Efficiency**

#### Pump performance as a function of operating speed

The figure below shows typical overall and volumetric efficiencies for P90 pumps with system pressures of 210 and 420 bar [3000 and 6000 PSI], speed as percent of rated speed, and a fluid viscosity of 8 mm²/s (cSt) [50 SUS].


Rendement global et rendement volumétrique à la cylindrée maximale Overall efficiency ( $\eta_t$ ) and volumetric efficiency ( $\eta_v$ ) at maximum displacement




#### Pump performance as a function of pressure and speed

The following performance maps show typical overall efficiencies for P90 pumps with system pressures from 70 to 420 bar [1 000 to 6 000 PSI] at 2/3 of rated speed varying between 1/4 to maximum displacement. These efficiency maps apply to all frame sizes.

#### Overall efficiency at maximum displacement



#### Pump overall ( $\eta_t$ ) efficiency at 2/3 rated speed



Model Code

Operating Parameters

System design Para

Installation Drawings

SIZE 055

SIZE 075

**SIZE 100** 

**SIZE 130** 

SIZE 180

SIZE 250

Options

23/09/2016





Model Code

**Operating Parameters** 

System design Para

Installation Drawings

SIZE 055

## **SYSTEM DESIGN PARAMETERS**

#### Fluid and filtration

To prevent premature wear, it is imperative that only clean fluid enter the hydrostatic transmission circuit. A filter capable of controlling the fluid cleanliness to ISO 4406 class 22/18/13 (SAE J1165) or better under normal operating conditions is recommended.

The filter may be located either on the inlet (suction filtration) or discharge (charge pressure filtration) side of the charge pump. The selection of a filter depends on a number of factors including the contaminant ingression rate, the generation of contaminants in the system, the required fluid cleanliness, and the desired maintenance interval. Filters are selected to meet the above requirements using rating parameters of efficiency and capacity.

Filter efficiency may be measured with a Beta ratio  $(\beta_X)$ . For simple suction-filtered closed circuit transmissions and open circuit transmissions with return line filtration, a filter with a  $\beta$ -ratio within the range of  $\beta_{35-45} = 75$  ( $\beta_{10} \ge 2$ ) or better has been found to be satisfactory. For some open circuit systems, and closed circuits with cylinders being supplied from the same reservoir, a considerably higher filter efficiency is recommended. This also applies to systems with gears or clutches using a common reservoir. For these systems, a charge pressure or return filtration system with a filter  $\beta$ -ratio in the range of  $\beta_{15-20} = 75$  ( $\beta_{10} \ge 10$ ) or better is typically required.

Because each system is unique, only a thorough testing and evaluation program can fully validate the filtration system.

#### Charge pressure

The charge pressure setting listed in the model code is based on the charge flow across the charge pressure relief valve at fluid temperature of 50 °C [120 °F].

#### Independent braking system



The loss of hydrostatic drive line power, in any mode of operation (forward, neutral, or reverse) may cause the system to lose hydrostatic braking capacity. You must provide a braking system, redundant to the hydrostatic transmission, sufficient to stop and hold the vehicle or machine in the event of hydrostatic drive power loss.

#### Reservoir

The reservoir should be designed to accommodate maximum volume changes during all system operating modes and to promote deaeration of the fluid as it passes through the tank.

A suggested minimum total reservoir volume is 5/8 of the maximum charge pump flow per minute with a minimum fluid volume equal to 1/2 of the maximum charge pump flow per minute. This allows 30 seconds fluid dwell for removing entrained air at the maximum return flow. This is usually adequate to allow for a closed reservoir (no breather) in most applications.

Locate the reservoir outlet (charge pump inlet) above the bottom of the reservoir to take advantage of gravity separation and prevent large foreign particles from entering the charge inlet line. A 125 µm screen over the outlet port is recommended. Position the reservoir inlet (fluid return) to discharge below the normal fluid level, toward the interior of the tank. A baffle (or baffles) will further promote de-aeration and reduce surging of the fluid.

23/09/2016

<sup>&</sup>lt;sup>1</sup> Filter  $\beta$ x-ratio is a measure of filter efficiency defined by ISO 4572. It is defined as the ratio of the number of particles greater than a given diameter ("x" in microns) upstream of the filter to the number of these particles.



#### Case drain

A case drain line must be connected to one of the case outlets (L1 or L2) to return internal leakage to the system reservoir. The higher of the two case outlets should be used to promote complete filling of the case. Since case drain fluid is typically the hottest fluid in the system, it is advantageous to return this flow through the heat exchanger.

#### Sizing equations

The following equations are helpful when sizing hydraulic pumps. Generally, the sizing process is initiated by an evaluation of the machine system to determine the required motor speed and torque to perform the necessary work function. First, the motor is sized to transmit the maximum required torque. The pump is then selected as a flow source to achieve the maximum motor speed.

|                |                                        | SI units                                |                                                                                        |                                                                                      |
|----------------|----------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Output flow Q  | $= \frac{V_g.n.\eta_v}{1000}$          | (l/min)                                 | V <sub>g</sub> =                                                                       | Displacement per revolution (cm <sup>3</sup> /tr)                                    |
| Input torque M | $= \frac{V_g.\Delta_p}{20.\pi.\eta_m}$ | (N.m)                                   | Δp =                                                                                   | p <sub>o</sub> - p <sub>i</sub> (system pressure)<br>(bar)                           |
| Input power P  | _ = = _                                | Δ <sub>p</sub><br>0.η <sub>t</sub> (kW) | $\begin{array}{rcl} n & = \\ \eta_{v} & = \\ \eta_{m} & = \\ \eta_{t} & = \end{array}$ | Speed (tr/mn) Volumetric efficiency Mechanical efficiency Overall efficiency (ην.ηm) |

|                |                                       | US units                              |                                                                                        |                                                                                    |
|----------------|---------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Output flow Q  | $= \frac{V_g.n.\eta_V}{231}$          | (US gal/min)                          | V <sub>g</sub> =                                                                       | Displacement per revolution (in <sup>3</sup> /rev)                                 |
| Input torque M | $= \frac{V_g.\Delta_p}{2.\pi.\eta_m}$ | (lbf.in)                              | Δp =                                                                                   | p <sub>o</sub> - p <sub>i</sub> (system pressure)<br>(bar)                         |
| Input power P  | $= \frac{M.n.\pi}{198000} =$          | $\frac{Q.\Delta_p}{1714.\eta_t}$ (hp) | $\begin{array}{rcl} n & = \\ \eta_{v} & = \\ \eta_{m} & = \\ \eta_{t} & = \end{array}$ | Speed (rpm) Volumetric efficiency Mechanical efficiency Overall efficiency (ην.ηm) |

System

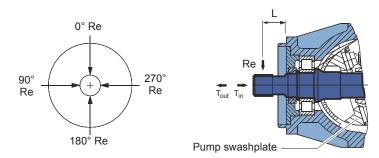
#### **Shaft Loads**

Normal bearing life in B<sub>10</sub> hours is shown in the table below. The figures reflect a continuous differential pressure of 240 bar *[3500 PSI]*, 1800 min<sup>-1</sup> (rpm) shaft speed, maximum displacement, and no external shaft side load. The data is based on a 50% forward, 50% reverse duty cycle, standard charge pump size, and standard charge pressure.

P90 pumps are designed with bearings that can accept external radial and thrust loads. The external radial shaft load limits are a function of the load position and orientation, and the operating conditions of the unit.

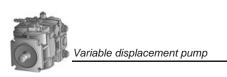
The maximum allowable radial load (Re), is based on the maximum external moment (Me), and the distance (L) from the mounting flange to the load. It may be determined using the table and formula below. Thrust (axial) load limits are also shown.

#### Re = Me / L


All external shaft loads affect bearing life. In applications with external shaft loads, minimize the impact by positioning the load at 90° or 270° as shown in the figure.

Contact your Poclain Hydraulics representative for an evaluation of unit bearing life if:

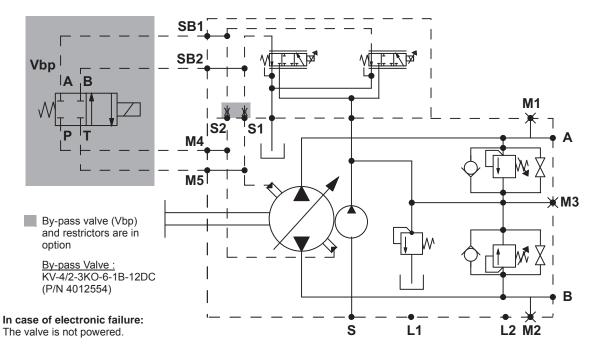
- continuously applied external loads exceed 25 % of the maximum allowable radial load (Re).
- the pump swashplate is positioned on one side of center all or most of the time.
- the unit bearing life (B<sub>10</sub>) is critical.


| Bearing life |                                    |  |  |  |  |
|--------------|------------------------------------|--|--|--|--|
| Frame size   | Bearing life – B <sub>10</sub> hrs |  |  |  |  |
| 055          | 22 090                             |  |  |  |  |
| 075          | 22 970                             |  |  |  |  |
| 100          | 22 670                             |  |  |  |  |
| 130          | 17 990                             |  |  |  |  |
| 180          | 16 150                             |  |  |  |  |
| 250          | 12 020                             |  |  |  |  |

#### Radial and thrust load position



| Allowable external shaft load                |       |                |               |               |                |               |  |
|----------------------------------------------|-------|----------------|---------------|---------------|----------------|---------------|--|
| Parameter                                    |       | Frame size     |               |               |                |               |  |
| rarameter                                    | 055   | 075            | 100           | 130           | 180            | 250           |  |
| External moment (Me) N.m [lbf.in]            | 101   | 118            | 126           | 140           | 161            | 176           |  |
|                                              | [893] | <i>[1044]</i>  | <i>[1115]</i> | <i>[1239]</i> | <i>[14</i> 25] | <i>[1557]</i> |  |
| Maximum shaft thrust in (T <sub>in</sub> )   | 3340  | 4300           | 5160          | 5270          | 7000           | 7826          |  |
| N [ <i>Ibf</i> ]                             | [750] | [966]          | [1160]        | [1184]        | [1573]         | [1759]        |  |
| Maximum shaft thrust out (T <sub>out</sub> ) | 910   | 930            | 1000          | 688           | 1180           | 1693          |  |
| N [lbf]                                      | [204] | [2 <i>0</i> 9] | [224]         | [154]         | [265]          | [380]         |  |


23/09/2016





## **INSTALLATION DRAWINGS**

#### Pump



The pump is able to return to its neutral position slowly to avoid machine jerk.

#### During normal operating or shifting:

The valve is powered.

The pump has a very short response time to allow soft shifting of Poclain Hydraulics motors.

Orifices are by passed to bring maximum flow directly to the servo cylinders.

A et B: Main system of the loop (input / output)

S: charge (feed) inlet

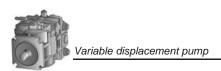
L1 and L2 : case drain
M1 and M2 : A and B ports pressure gauge
M3 : charge (feed) pressure gauge M4 and M5 : control pressure gauge

| Ports size    |                   |                   |      |                                |     |                                |  |  |  |
|---------------|-------------------|-------------------|------|--------------------------------|-----|--------------------------------|--|--|--|
| Ports         |                   | Frame size        |      |                                |     |                                |  |  |  |
| roits         | 055               | 075               | 100  | 130                            | 180 | 250                            |  |  |  |
| A and B       | 1" flange SA      | AE J518 code      | e 62 | 1"-1/4 flange SAE J518 code 62 |     | 1"-1/2 flange SAE J518 code 62 |  |  |  |
| S             | 1-5/16 - 12 U     | N 2B              |      | 1"-1/2 flange SAE J518 code 61 |     |                                |  |  |  |
| L1 and L2     | 1"-1/16           | 6 - 12 UN 2B      |      | 1"-5/16 - 12 UN 2B             |     | 1"-5/8 - 12 UN 2B              |  |  |  |
| M1, M2 and M3 |                   | 9/16" - 18 UNF 2B |      |                                |     |                                |  |  |  |
| M4 and M5     | 7/16" - 20 UNF 2B | 9/16" - 18 UNF 2B |      |                                |     |                                |  |  |  |

23/09/2016 17

Code Model

**Parameters** Operating


design Par System

**nstallation** Drawings

> 055 IZE  $\overline{S}$

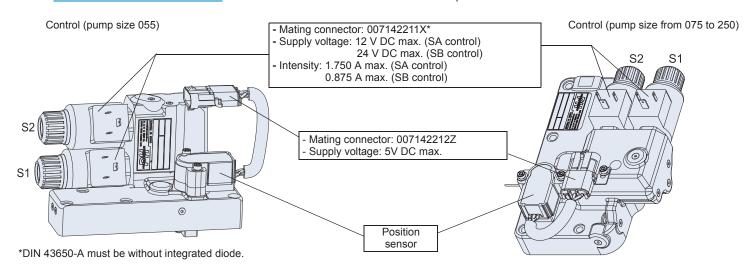
075 SIZE

> 100 SIZE



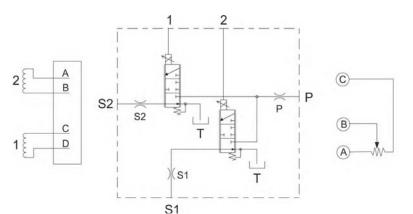
#### SA or SB control

#### Features:


Proportional electronic control driven by the Poclain Hydraulics electronic boxes.

- Our electronic control boxes control the displacement and the direction of the flow while monitoring permanently the functioning parameters of the engine and of the complete hydraulic system.
- Two contamination resistant (IP65) solenoid valves controls the displacement and the direction of the flow.
- A sensor linked to the swash plate monitors permanently the actual displacement setting.




For SD Master and SD Premier ECU use SA control whatever the supply voltage (12V or 24V).

|                   | Shaft rotation |        |                   |        |  |  |  |
|-------------------|----------------|--------|-------------------|--------|--|--|--|
|                   | Clock          | wise   | counter clockwise |        |  |  |  |
| Actuated solenoid | S1             | S2     | S1                | S2     |  |  |  |
| Servo cylinder    | M5             | M4     | M5                | M4     |  |  |  |
| Port A flow       | outlet         | inlet  | inlet             | outlet |  |  |  |
| Port B flow       | inlet          | outlet | outlet            | inlet  |  |  |  |



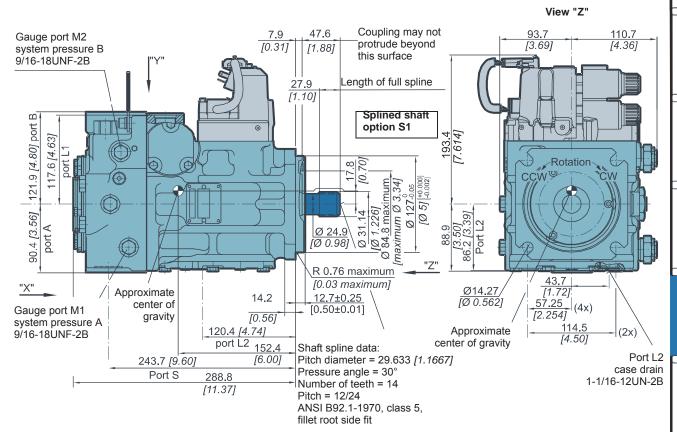
| Pump displacement | Feedback angle for<br>max displacement |
|-------------------|----------------------------------------|
| 055               | 19.2°                                  |
| 075               | 16.4°                                  |
| 100               | 19.1°                                  |
| 130               | 17.4°                                  |
| 180/250           | 19.5°                                  |

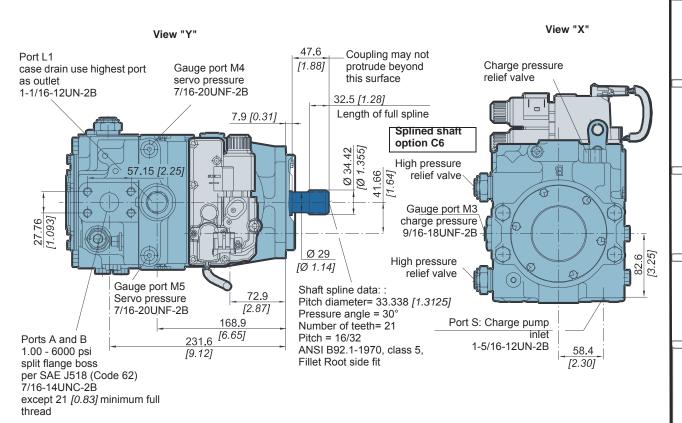
#### Hydraulic symbol :



 Position sensor

 C
 +5V


 B
 Signal


 A
 Ground

## 5

## **FRAME SIZE 055**

#### Control SA or SB, Side ports





23/09/2016

Operating Model Parameters

Code

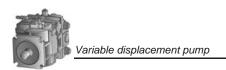
Ope ora

System design Para

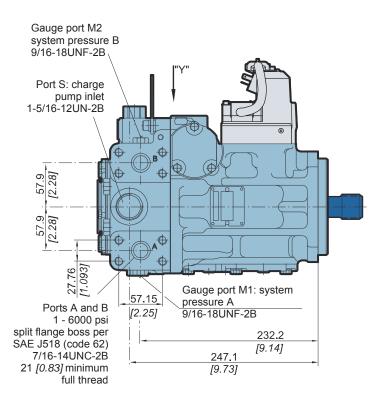
Installation Drawings

SIZE 055

SIZE 075


SIZE 100

SIZE 130


SIZE

180


SIZE 250



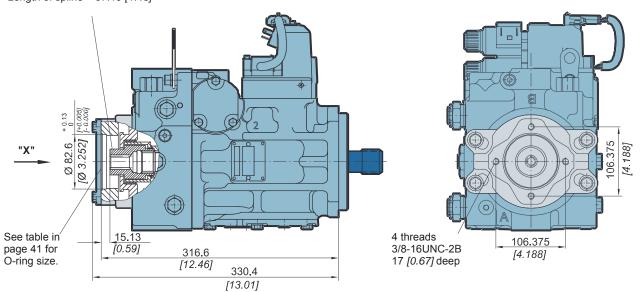
#### Control SA or SB, Twin ports



View "Y"

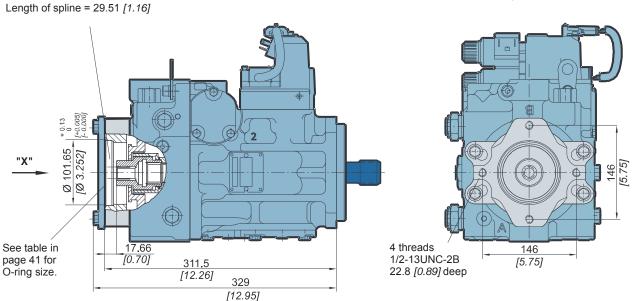


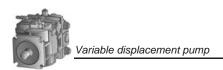
View "X"


View "X"

055

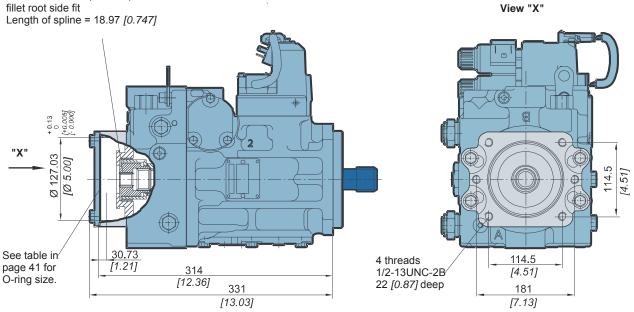
SIZE (


#### SAE A (option AB), Side ports


Coupling spline data:
Pitch diameter = 14.288 [0.5625]
Pressure angle = 30°
Number of teeth = 9
Pitch = 16/32
ANSI B92.1-1970, class 6,
fillet root side fit
Length of spline = 37.13 [1.46]

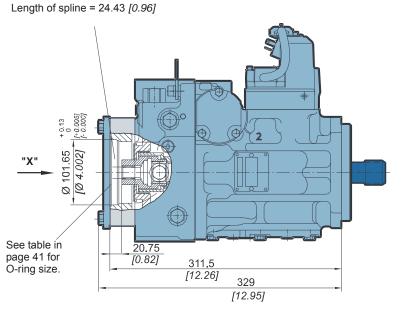


#### SAE B (option BC), Side ports


Coupling spline data:
Pitch diameter = 20.6375 [0.8125]
Pressure angle = 30°
Number of teeth = 13
Pitch = 16/32
ANSI B92.1-1970, class 6,
fillet root side fit

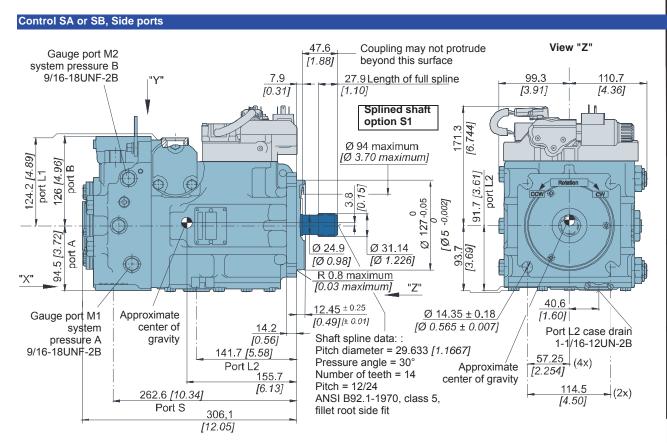




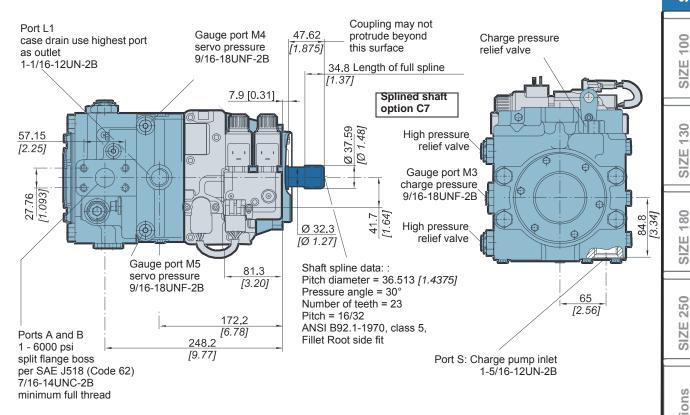

#### SAE C (option CD), Side ports


Coupling spline data:
Pitch diameter = 29.6333 [1.167]
Pressure angle = 30°
Number of teeth = 14
Pitch = 12/24
ANSI B92.1-1970, class 6,
fillet root side fit




#### SAE B-B (option BB), Side ports

Coupling spline data: :
Pitch diameter = 23.8125 [0.9375]
Pressure angle = 30°
Number of teeth = 15
Pitch = 16/32
ANSI B92.1-1970, class 6, fillet root side fit






## **FRAME SIZE 075**



View "X" View "Y"



23/09/2016 23

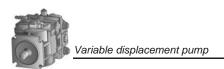
Model Parameters Operating

Code

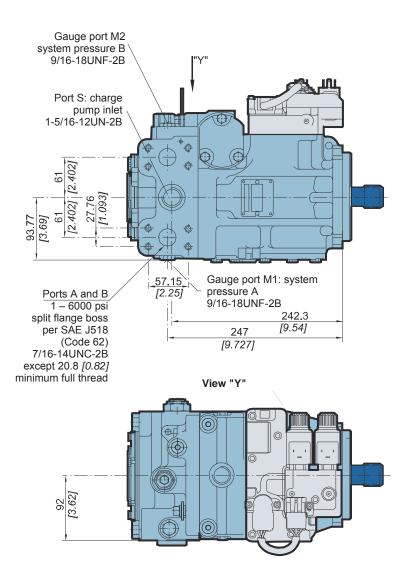
Para

System design

lation Drawings Install


> 055 IZE  $\overline{S}$

075 SIZE (

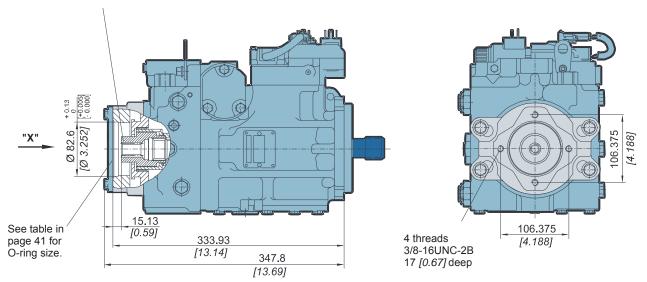

130 ZE

180 ZE S

250 ZE S



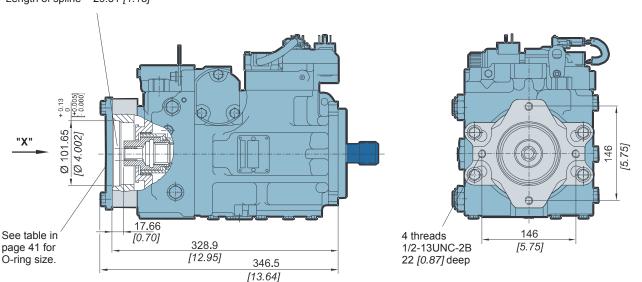
#### Control SA or SB, Twin ports






#### SAE A (option AB), Side ports

Coupling spline data: :
Pitch diameter = 14.288 [0.5625]
Pressure angle = 30°
Number of teeth = 9
Pitch = 16/32
ANSI B92.1-1970, class 6,
fillet root side fit
Length of spline = 37.13 [1.46]


View "X"



#### SAE B (option BC), Side ports

Coupling spline data: :
Pitch diameter = 20.6375 [0.8125]
Pressure angle = 30°
Number of teeth = 13
Pitch = 16/32
ANSI B92.1-1970, class 6,
fillet root side fit
Length of spline = 29.51 [1.16]

View "X"



Model Code

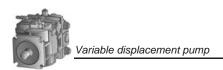
**Operating Parameters** 

System design Para

Installation Drawings

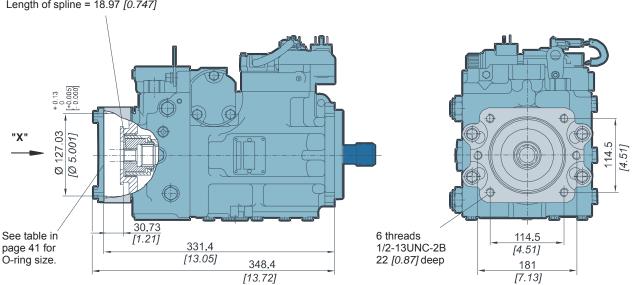
SIZE 055

SIZE 100


**SIZE 075** 

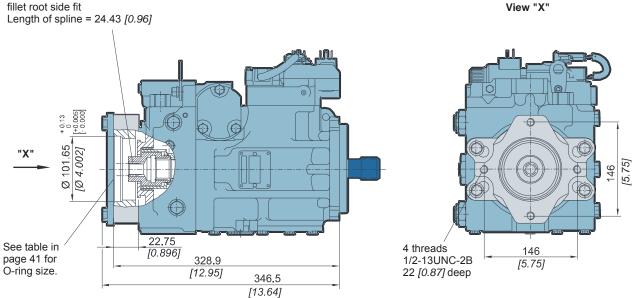
**SIZE 130** 

SIZE 180


SIZE 250

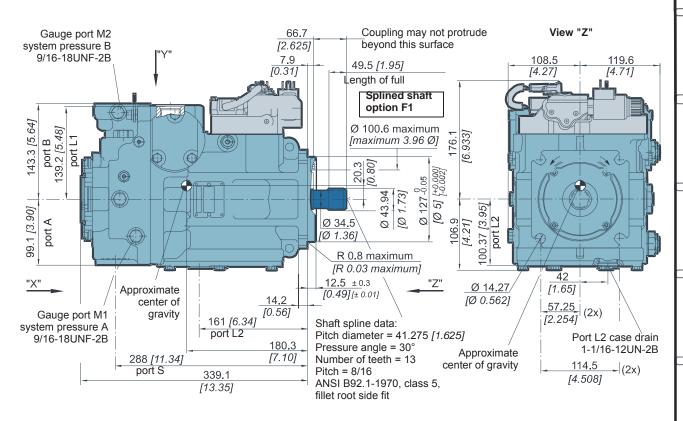
View "X"



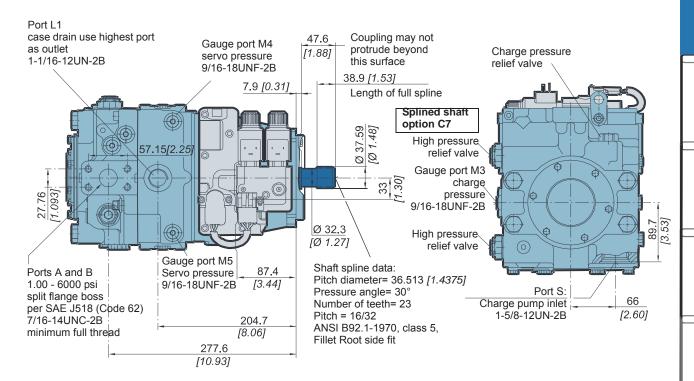

#### SAE C (option CD), Side ports

Coupling spline data:
Pitch diameter = 29.6333 [1.167]
Pressure angle = 30°
Number of teeth = 14
Pitch = 12/24
ANSI B92.1-1970, class 6,
fillet root side fit
Length of spline = 18.97 [0.747]




#### SAE B-B (option BB), side ports

Coupling spline data: :
Pitch diameter = 23.8125 [0.9375]
Pressure angle = 30°
Number of teeth = 15
Pitch = 16/32
ANSI B92.1-1970, class 6, fillet root side fit




## **FRAME SIZE 100**

#### Control SA or SB, Side ports



View "Y" View "X"



Model Code

**Operating Parameters** 

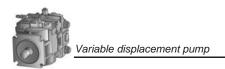
System design Para

nstallation Drawings

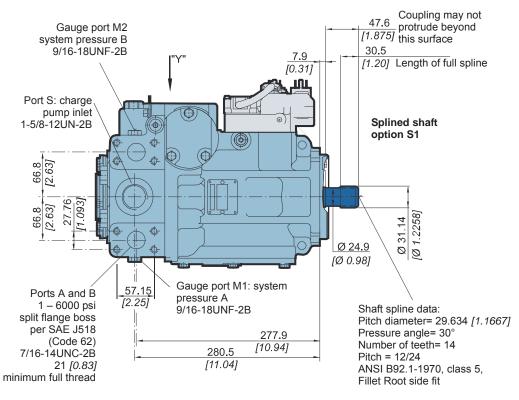
SIZE 055

SIZE 075

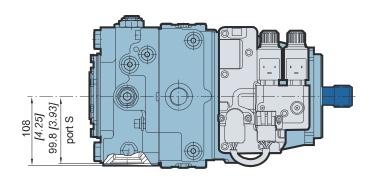
SIZE 100


130

SIZE SIZE


ZE

S


SIZE 250



#### Control SA or SB, Twin ports



View "Y"



system pressure A 9/16-18UNF-2B

Code

Model

**Parameters** 

Para

design

Operating

System

lation Drawings

Install

055

IZE

 $\overline{S}$ 

07

ZE

S

100

ZE

S

**SIZE 130** 

8

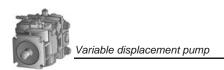
S

250

ZE

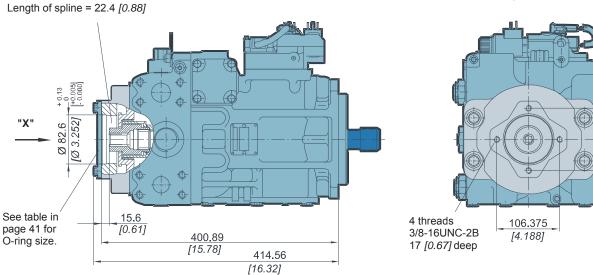
S

## **FRAME SIZE 130**


#### Control SA or SB, Twin ports Gauge port M2 66.68 Coupling may not protrude

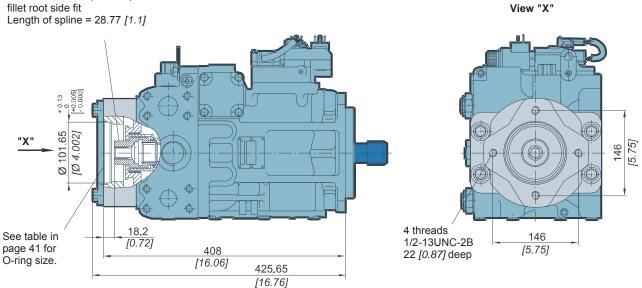


66.68 Coupling may not protrude beyond View "Y" View "X" [2.625] this surface Charge pressure Gauge port M4 relief valve 42.5 Length of full spline servo pressure 9/16-18UNF-2B [1.67] Splined shaft 7.9 [0.31] option C8 High pressure 4. relief valve Ø 891 ġ Gauge port M3 charge [4.37] pressure 9/16-18UNF-2B Ø 37 High pressure [Ø 1.46] relief valve Gauge port M5 Shaft spline data: 101.4 servo pressure Pitch diameter= 42.862 [1.6875] [3.99] 9/16-18UNF-2B Port L1 Pressure angle= 30° case drain Number of teeth= 27 use highest 209.3 Pitch= 16/32 port as outlet [8.24] ANSI B92.1-1970, class 5, 1-5/16-12UN-2B Fillet Root side fit 370 [14.58]


106.375 [4.188]

View "X"




#### SAE A (option AB), Twin ports

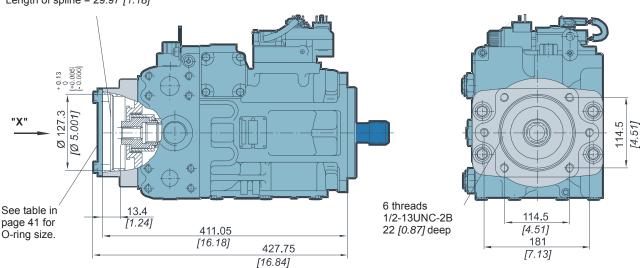
Coupling spline data:
Pitch diameter = 14.288 [0.5625]
Pressure angle = 30°
Number of teeth = 9
Pitch = 16/32
ANSI B92.1-1970, class 6,
fillet root side fit



#### SAE B (option BC), Twin ports

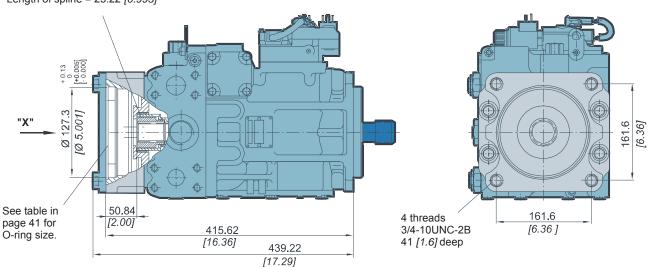
Coupling spline data:
Pitch diameter = 20.6375 [0.8125]
Pressure angle = 30°
Number of teeth = 13
Pitch = 16/32
ANSI B92.1-1970, class 6,
fillet root side fit




View "X"

View "X"




#### SAE C (option CD), Twin ports

Coupling spline data:
Pitch diameter = 29.6333 [1.167]
Pressure angle = 30°
Number of teeth = 14
Pitch = 12/24
ANSI B92.1-1970, class 6,
fillet root side fit
Length of spline = 29.97 [1.18]



#### SAE D (option DE), Twin ports

Coupling spline data:
Pitch diameter = 41.275 [1.625]
Pressure angle = 30°
Number of teeth = 13
Pitch = 8/16
ANSI B92.1-1970, class 6,
fillet root side fit
Length of spline = 25.22 [0.993]



Model Code

**Operating Parameters** 

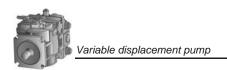
System (ssign Para P

tion Syste

055 | Installation | Drawings

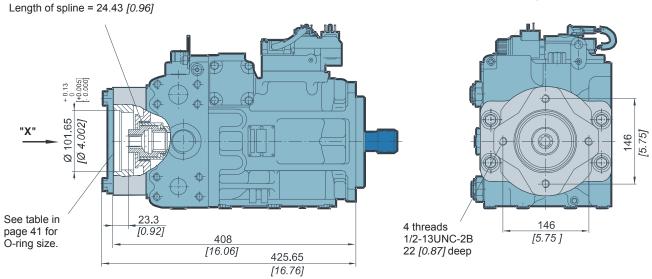
SIZE 075

SIZE


**SIZE 100** 

**SIZE 130** 

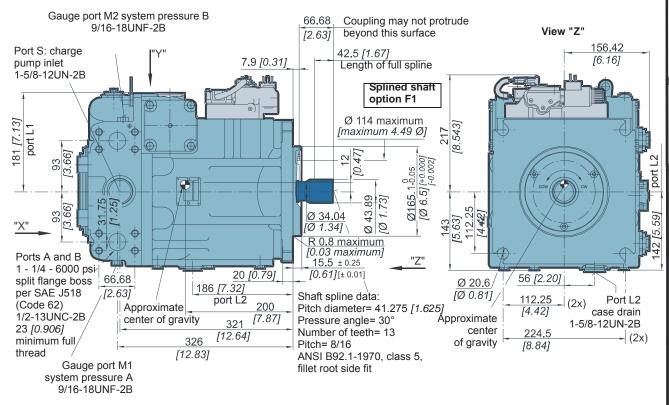
SIZE 180

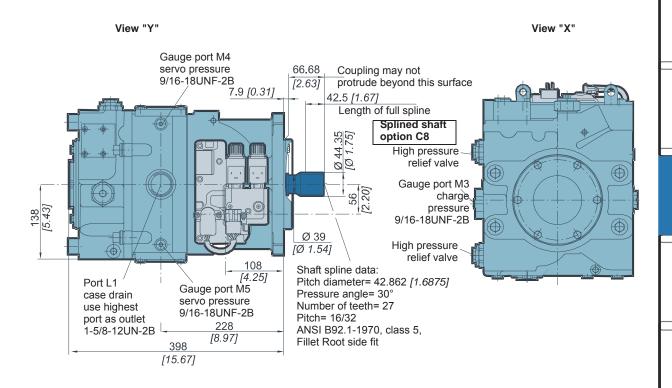

SIZE 250

View "X"



#### SAE B-B (option BB), Twin ports


Coupling spline data:
Pitch diameter = 23.8125 [0.9375]
Pressure angle = 30°
Number of teeth = 15
Pitch = 16/32
ANSI B92.1-1970, class 6, fillet root spline = 24.43 [0.06]






## **FRAME SIZE 180**

#### Control SA or SB, Twin ports





23/09/2016

Operating | Model (

Code

em 0 Para Pa

System design Par

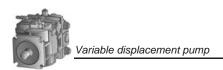
Installation Drawings

SIZE 055

SIZE 075

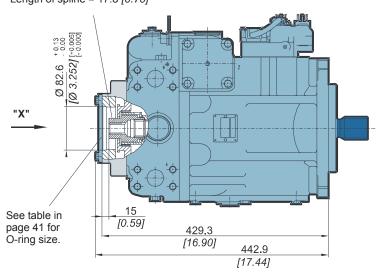
SIZE

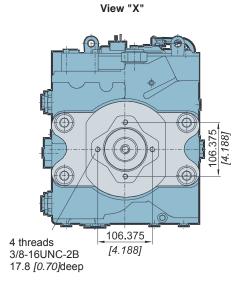
130


ZE

 $\overline{S}$ 

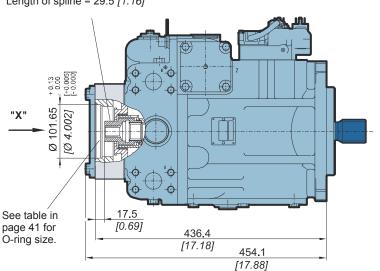
100

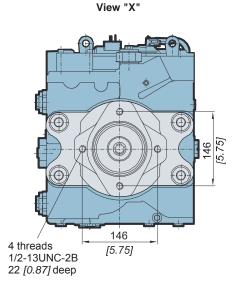

**SIZE 180** 


SIZE 250



#### SAE A (option AB), Twin ports

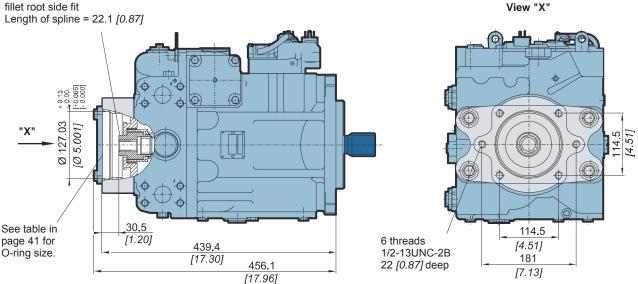

Coupling spline data:
Pitch diameter = 14.288 [0.5625]
Pressure angle = 30°
Number of teeth = 9
Pitch = 16/32
ANSI B92.1-1970, class 6,
fillet root side fit
Length of spline = 17.8 [0.70]






#### SAE B (option BC), Twin ports

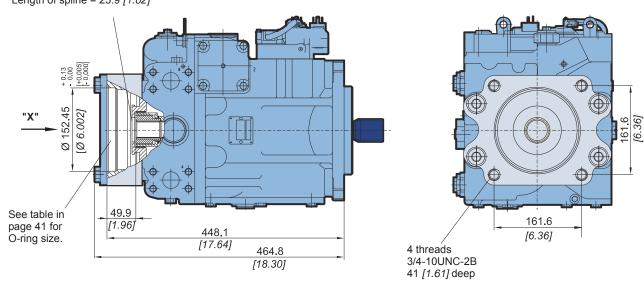
Coupling spline data:
Pitch diameter = 20.6375 [0.8125]
Pressure angle = 30°
Number of teeth = 13
Pitch = 16/32
ANSI B92.1-1970, class 6,
fillet root side fit
Length of spline = 29.5 [1.16]








#### SAE C (option CD), Twin ports


Coupling spline data:
Pitch diameter = 29.6333 [1.167]
Pressure angle = 30°
Number of teeth = 14
Pitch = 12/24
ANSI B92.1-1970, class 6,
fillet root seeling = 23.1 (0.87)



#### SAE D (option DE), Twin ports

Coupling spline data:
Pitch diameter = 41.475 [1.625]
Pressure angle = 30°
Number of teeth = 13
Pitch = 8/16
ANSI B92.1-1970, class 6,

Length of spline = 25.9 [1.02]



Model Code

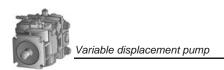
Operating Parameters

System design Para

Installation Drawings

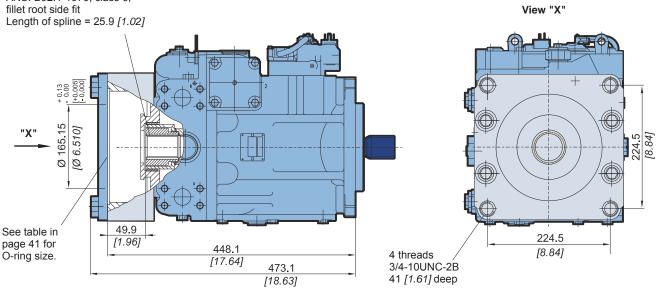
SIZE 055

075


SIZE 100 SIZE

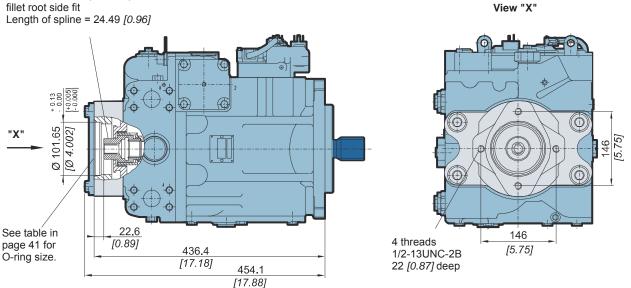
View "X"

SIZE 130


**SIZE 180** 

SIZE 250



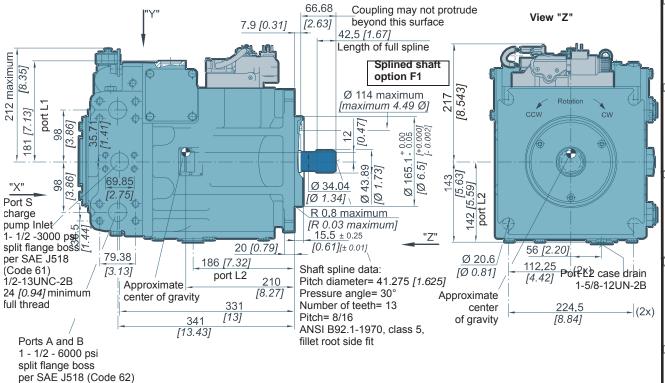

#### SAE E (option EF), Twin ports

Coupling spline data:
Pitch diameter = 41.273 [1.625]
Pressure angle = 30°
Number of teeth = 13
Pitch = 8/16
ANSI B92.1-1970, class 6, fillet root side fit

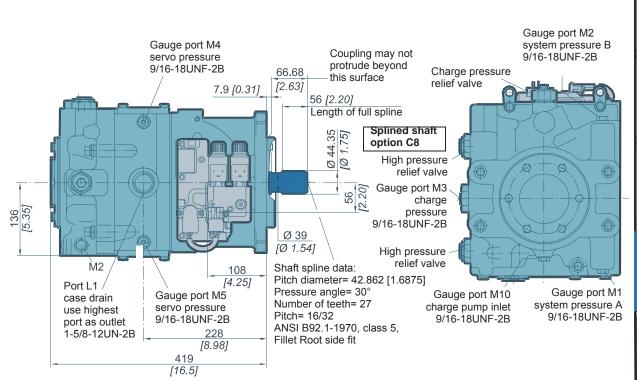


#### SAE B-B (option BB), Twin ports

Coupling spline data:
Pitch diameter = 23.8125 [0.9375]
Pressure angle = 30°
Number of teeth = 15
Pitch = 16/32
ANSI B92.1-1970, class 6, fillet root side fit




## **FRAME SIZE 250**


#### Control SA or SB, Twin ports

5/8-11UNC-2B

25 [0.98] minimum full thread



View "Y" View "X"



23/09/2016 37

Model Operating

Code

**Parameters** 

Para. System design

> Installation Drawings

> > 055 IZE  $\overline{S}$

07 ZE S

100 ZE S

130 ZE  $\overline{S}$ 

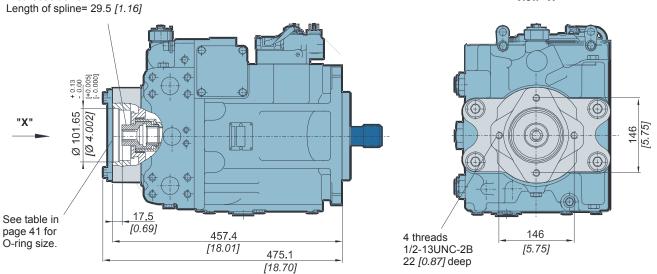
> 180 ZE S

**SIZE 250** 

Options

View "X"




#### SAE A (option AB), Twin ports

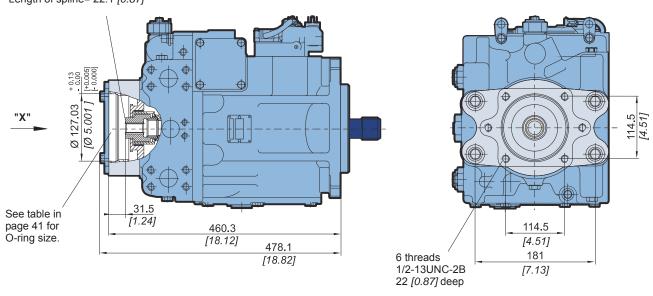
Coupling spline data:
Pitch diameter= 14.288 [0.5625]
Pressure angle= 30°
Number of teeth= 9
Pitch= 16/32
ANSI B92.1-1970, class 6,
fillet root side fillet and the second spline in the second spline



#### SAE B (option BC), Twin ports

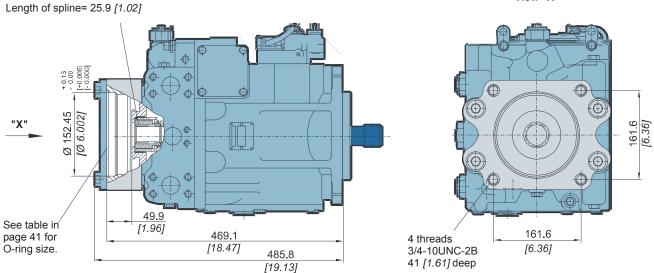
Coupling spline data:
Pitch diameter= 20.6375 [0.8125]
Pressure angle= 30°
Number of teeth= 13
Pitch= 16/32
ANSI B92.1-1970, class 6,
fillet root side fit




View "X"

View "X"




#### SAE C (option CD), Twin ports

Coupling spline data:
Pitch diameter= 29.6333 [1.167]
Pressure angle= 30°
Number of teeth= 14
Pitch= 12/24
ANSI B92.1-1970, class 6,
fillet root side fit
Length of spline= 22.1 [0.87]



#### SAE D (option DE), Twin ports

Coupling spline data:
Pitch diameter= 41.275 [1.625]
Pressure angle= 30°
Number of teeth= 13
Pitch= 8/16
ANSI B92.1-1970, class 6,
fillet root side fit



Model Code

Operating Parameters

em Op Para, Para

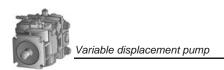
System design Par

Installation Drawings

SIZE 055

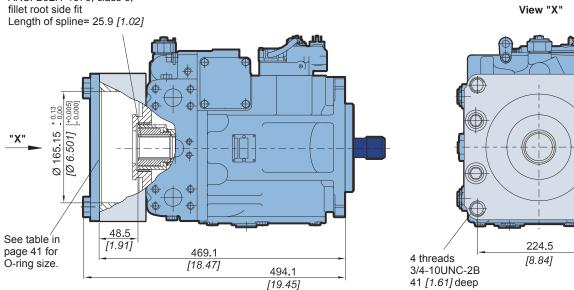
SIZE 075

SIZE 100


**SIZE 130** 

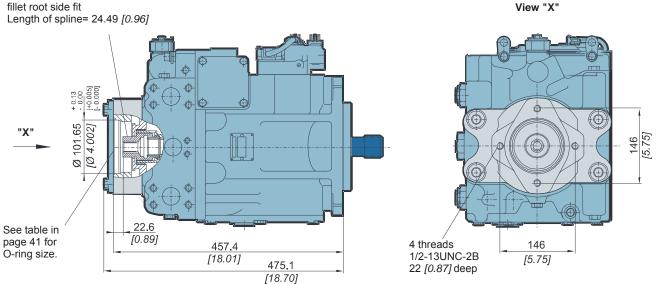
SIZE 180

SIZE 250


Options

224.5 [8.84]




#### SAE E (option EF), Twin ports

Coupling spline data: Pitch diameter= 41.275 [1.625] Pressure angle= 30° Number of teeth= 13 Pitch= 8/16 ANSI B92.1-1970, class 6, fillet root side fit



#### SAE B-B (option BB), Twin ports

Coupling spline data:
Pitch diameter= 23.8125 [0.9375]
Pressure angle= 30°
Number of teeth= 15
Pitch= 16/32
ANSI B92.1-1970, class 6, fillet root side fit





O-ring size according to flange type

| Flange type       | O-ring size | O-ring material | P/N        |
|-------------------|-------------|-----------------|------------|
| SAE A             | 82.22x2.62  | FPM 70 shore A  | 001830433B |
| SAE B and SAE B-B | 94.92x2.62  | FPM 70 shore A  | A25721H    |
| SAE C             | 120.32x2.62 | FPM 70 shore A  | 001830456B |
| SAE D             | 150x3       | FPM 80 shore A  | A19528B    |
| SAE E             | 164.77x2.62 | FPM 80 shore A  | A19530D    |

Model Code

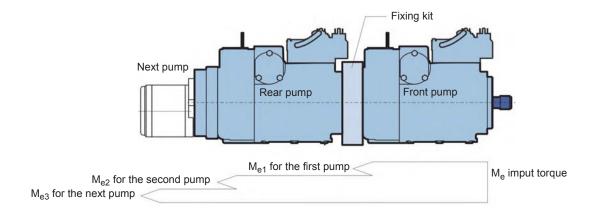
Operating Parameters

System design Para.

Installation Drawings

SIZE 055

SIZE 075


23/09/2016 41





# **OPTIONS**

### Shaft availability and torque ratings





Torque required by auxiliary pumps is additive. Ensure requirements don't exceed shaft torque ratings.

| Shaft availability and torque ratingsTypes d'arbres disponibles et couples nominaux N.m [lbf.in] |           |                  |                  |                                          |                                            |                                            |                                            |
|--------------------------------------------------------------------------------------------------|-----------|------------------|------------------|------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|
| Shaft description                                                                                | Option    |                  |                  | Frame                                    | e size                                     |                                            |                                            |
|                                                                                                  | code      | 055              | 075              | 100                                      | 130                                        | 180                                        | 250                                        |
| 21 teeth 16/32 pitch spline                                                                      | C6        | 1130<br>[10 000] | _                | _                                        | _                                          | _                                          | _                                          |
| 23 teeth 16/32 pitch spline                                                                      | C7        | _                | 1580<br>[14 000] | 1580<br>[14 000]                         | _                                          | _                                          | _                                          |
| 27 teeth 16/32 pitch spline                                                                      | C8        | _                | _                | _                                        | 2938<br>[26 000]                           | 2938<br>[26 000]                           | 2938<br>[26 000]                           |
| 13 teeth 8/16 pitch spline                                                                       | F1        | _                | _                | 1810<br>[16 000]                         | 1810 <sup>+</sup><br>[16 000] <sup>+</sup> | 1810 <sup>+</sup><br>[16 000] <sup>+</sup> | 1810 <sup>+</sup><br>[16 000] <sup>+</sup> |
| 14 teeth 12/24 pitch spline                                                                      | S1        | 735<br>[6 500]   | 735<br>[6 500]   | 735 <sup>+</sup><br>[6 500] <sup>+</sup> | _                                          | _                                          | _                                          |
| — Not available + Not                                                                            | recommend | ded for front pu | ump in tandem co | nfigurations                             |                                            |                                            |                                            |

<sup>-</sup> Not available

Contact your Poclain Hydraulics representative for other shafts ends.

|      | Tandem pump fixing kit |     |     |                                 |                                      |                                            |                                                                                                                 |         |                      |
|------|------------------------|-----|-----|---------------------------------|--------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------|----------------------|
|      | Front pump             |     |     |                                 |                                      |                                            |                                                                                                                 |         |                      |
|      |                        | 055 | 075 | 100                             | 130                                  | 180                                        | 250                                                                                                             | Kit     | tightening<br>torque |
|      | 055                    |     |     |                                 |                                      |                                            |                                                                                                                 |         |                      |
| Rear | 075                    |     |     | 4 x SCREW-HEX<br>+ 4 x WASHER D | ( HD,1/2-13UNC X<br>0IN6916-13 C45 + | 1.1/4 GRADE 5 (AM<br>1 x O-RING120.32x     | NSI B18.2.1, SAE J429)<br>2.62 N-FPM80                                                                          | A19516N | 100 N.m              |
| pump | 100                    |     |     |                                 |                                      |                                            |                                                                                                                 |         |                      |
|      | 130                    |     | Not |                                 | B18.2.1, SAE J                       | 1429) + 4 x WASHE                          | C X 2.1/4 GRADE 5 (ANSI<br>R797 X 1.281 X .184<br>RING150.00x3.00 N-FPM80                                       | A19517P |                      |
|      | 180                    |     | 3%  | Policable                       |                                      | 4 GRADE 5 (A<br>+ 4 x WASHEI<br>HARDENED 2 | EX HD, 3/4 -10 UNC X 2.1/<br>(NSI B18.2.1, SAE J429)<br>R797 X 1.281 X .184<br>15-35 HRC<br>164.77x2.62 N-FPM80 | A19519R | 360 N.m              |
|      | 250                    |     |     |                                 |                                      |                                            |                                                                                                                 |         |                      |

23/09/2016

Model Code

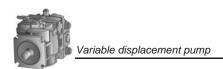
Operating Parameters

design Para. System

Installation Drawings

> 055 SIZE

**SIZE 075** 

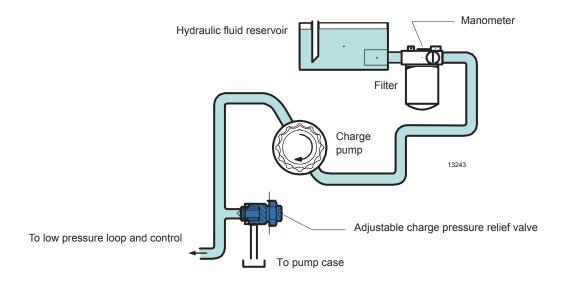

100 SIZE

130 SIZE

**SIZE 180** 

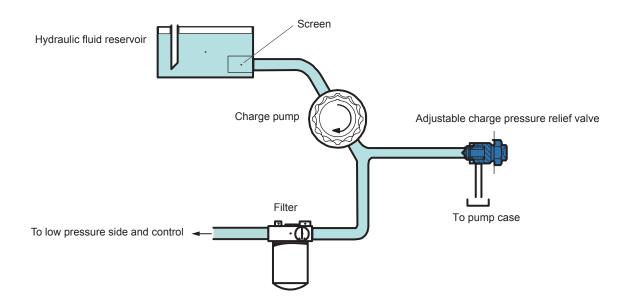
**SIZE 250** 

Options




#### **Filtration options**

#### Suction filtration - option S


The suction filter is placed in the circuit between the reservoir and the inlet to the charge pump, as shown below.

The use of a filter contamination monitor is recommended.



#### Charge pressure filtration - option R, T, P, and L

The pressure filter can be mounted directly on the pump or mounted remotely for ease of servicing. A 100-125 µm mesh screen, located in the reservoir or the charge inlet line, is recommended when using charge pressure filtration. This system requires a filter capable of withstanding charge pressure.





### High pressure relief valves

When system pressure exceeds the setting of the valve, it passes oil from the high pressure system loop to the low pressure system loop.

#### **Bypass Function**

In some applications it is desirable to bypass fluid around the variable displacement pump when pump shaft rotation is either not possible or not desired. For example, an inoperable vehicle may be moved to a service or repair location or winched onto a trailer without operating the prime mover. To provide for this, P90 pumps are designed with a bypass function.

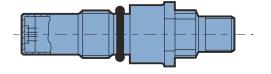
The bypass is operated by mechanically rotating the bypass hex on both multifunction valves three (3) turns counterclockwise (CCW). This connects working loop A and B and allows fluid to circulate without rotating the pump and prime mover.



Bypass valves are intended for moving a machine or vehicle for very short distances at very slow speeds. They are NOT intended as tow valves.

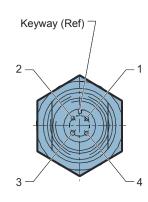
#### Speed sensor

An optional speed sensor for direct measurement of speed is available. This sensor may also be used to sense the direction of rotation.


A special magnetic ring is pressed onto the outside diameter of the cylinder block and a Hall effect sensor is located in the housing. The sensor accepts supply voltage and outputs a digital pulse signal in response to the speed of the ring. The output changes its high/low state as the north and south poles of the permanently magnetized speed ring pass by the face of the sensor. The digital signal is generated at frequencies suitable for microprocessor based controls. The sensor is available with M12 connector (4 pins).

| Specifications             |                               |  |  |  |
|----------------------------|-------------------------------|--|--|--|
| P/N                        | A21674J                       |  |  |  |
| Supply voltage*            | 4.5 to 8.5 VDC                |  |  |  |
| Supply voltage (regulated) | 15 VDC max.                   |  |  |  |
| Required current           | 12 mA at 5 VDC, 1 Hz          |  |  |  |
| Max. current               | 20 mA at 5 VDC, 1 Hz          |  |  |  |
| Max. frequency             | 15 kHz                        |  |  |  |
| Voltage output (high)      | Supply -0.5 V min.            |  |  |  |
| Voltage output (low)       | 0.5 V max.                    |  |  |  |
| Temperature range          | -40° to 110°C [-40° to 230°F] |  |  |  |

\* Do not energize the 4.5 to 8.5 VDC sensor with 12 VDC battery voltage. Use a regulated power supply. If you need to energize the sensor with battery voltage, contact your Poclain Hydraulics representative for a special sensor.


| Pulse frequency      |            |     |     |     |     |     |  |
|----------------------|------------|-----|-----|-----|-----|-----|--|
|                      | Frame size |     |     |     |     |     |  |
|                      | 055        | 075 | 100 | 130 | 180 | 250 |  |
| Pulse per revolution | 52         | 58  | 63  | 69  | 77  | 85  |  |

#### M12 connector (4 pins)



| Pin | Function | Colour |
|-----|----------|--------|
| 1   | Supply   | Brown  |
| 2   | NC       | White  |
| 3   | Signal   | Blue   |
| 4   | Ground   | black  |

| Mating connector                                  | P/N     |
|---------------------------------------------------|---------|
| Cable with right angle M12 connector (lenght 5 m) | A04999J |
| Cable with straight M12 connector (lenght 5 m)    | A07468S |



Model Code

**Operating Parameters** 

System lesign Para.

Installation Drawings

SIZE 055

SIZE 075

**SIZE 100** 

SIZE 130

SIZE 180

SIZE 250

Options

23/09/2016 45



#### **Charge Pump**

Charge flow is required on all P90 pumps applied in closed circuit installations. The charge pump provides flow to make up internal leakage, maintain a positive pressure in the main circuit, provide flow for cooling and filtration, replace any leakage losses from external valving or auxiliary systems, and to provide flow and pressure for the control system.

Many factors influence the charge flow requirements. These factors include system pressure, pump speed, pump swashplate angle, type of fluid, temperature, size of heat exchanger, length and size of hydraulic lines, control response characteristics, auxiliary flow requirements, hydrostatic motor type, etc.

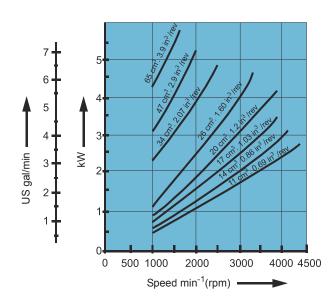
Unusual application conditions may require a more detailed review of charge pump sizing. Charge pressure must be maintained at a specified level under all operating conditions to prevent damage to the transmission. Poclain Hydraulics recommends testing under actual operating conditions to verify this

#### Charge pump sizing/selection

.In most applications a general guideline is that the charge pump displacement should be at least 10% of the total displacement of all components in the system. Unusual application conditions may require a more detailed review of charge flow requirements.

System features and conditions which may invalidate the 10% guideline include (but are not limited to):

- Continuous operation at low input speeds (< 1500 min<sup>-1</sup> (rpm))
- High shock loading
- Excessively long system lines (> 3m [9.8 ft])
- · Auxiliary flow requirements
- · Use of low speed high torque motors


Contact your Poclain Hydraulics representative for application assistance if your application includes any of these conditions.

| Available charge pump sizes and speed limits |                                |                                    |  |  |  |  |
|----------------------------------------------|--------------------------------|------------------------------------|--|--|--|--|
| Option code                                  | Displacement cm³/rev [in³/rev] | Rated speedmin <sup>-1</sup> (rpm) |  |  |  |  |
| В                                            | 11 [0.68]                      | 4200                               |  |  |  |  |
| С                                            | 14 [0.86]                      | 4200                               |  |  |  |  |
| D                                            | 17 [1.03]                      | 3900                               |  |  |  |  |
| E                                            | 20 [1.20]                      | 3600                               |  |  |  |  |
| F                                            | 26 [1.60]                      | 3300                               |  |  |  |  |
| G                                            | 26 [1.60]                      | 3100 (130 cm <sup>3</sup> pump)    |  |  |  |  |
| Н                                            | 34 [2.07]                      | 3100                               |  |  |  |  |
| J                                            | 47 [2.86]                      | 2600                               |  |  |  |  |
| K                                            | 65 [3.96]                      | 2300                               |  |  |  |  |

#### Charge pump output flow

#### 24 90 80 21 70 18 60 15 50 12 40 9 US gal/min L/min 30-6 20 3 10 0 500 1000 2000 3000 4000 4500 Speed min<sup>-1</sup>(rpm)

#### Charge pump power requirements



#### Charge pump flow and power curves

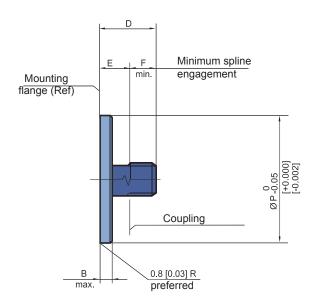
:Charge pressure: 20 bar :Case drain: 80 °C (8.2 cSt) :Reservoir temperature: 70 °C (11 cSt) [290 PSI] 180 °F (53 SUS) 160 °F (63 SUS)



#### **Auxiliary Mounting Pads**

| Auxiliary mounting pads specifications |             |                         |                                   |                                          |  |  |  |
|----------------------------------------|-------------|-------------------------|-----------------------------------|------------------------------------------|--|--|--|
| Mounting pad size                      | Option code | Internal spline size    | Minimum spline engagement mm [in] | Rated torque<br>N.m [lbf.in]             |  |  |  |
| SAE A                                  | AB          | 9 teeth<br>16/32 pitch  | 13.5<br>[0.53]                    | 107<br>[947]                             |  |  |  |
| SAE B                                  | ВС          | 13 teeth<br>16/32 pitch | 14.2<br>[0.56]                    | 256<br>[2 265]                           |  |  |  |
| SAE B-B                                | ВВ          | 15 teeth<br>16/32 pitch | 16.1<br>[0.63]                    | 347<br>[3 071]                           |  |  |  |
| SAE C                                  | CD          | 14 teeth<br>12/24 pitch | 18.3<br>[0.72]                    | 663 <sup>*</sup><br>[5 868] <sup>*</sup> |  |  |  |
| SAE D                                  | DE          | 13 teeth<br>8/16 pitch  | 20.8<br>[0.82]                    | 1 186<br>[10 500]                        |  |  |  |
| SAE D                                  | DG          | 27 teeth<br>16/32 pitch | 27.0<br>[1.06]                    | 2 236<br>[19 790]                        |  |  |  |
| SAE E                                  | EF          | 13 teeth<br>8/16 pitch  | 20.8<br>[0.82]                    | 1 637<br>[14 489]                        |  |  |  |

<sup>\*</sup> For the 055 pump the rated torque is limited to 445 N.m[3 830 lbf.in]


#### Mating pump requirements

The accompanying drawing provides the dimensions for the auxiliary pump mounting flange and shaft.

Pump mounting flanges and shafts with the dimensions noted below are compatible with the auxiliary mounting pads on the P90 pumps.

| Auxiliary pump dimensions |         |                     |                    |           |                    |  |  |
|---------------------------|---------|---------------------|--------------------|-----------|--------------------|--|--|
| Flange size               | Units   | P diameter          | B maximum          | D         | F minimum          |  |  |
| SAE A                     |         | 82.5 [3.25]         | 7.4 [0.29]         | 32 [1.26] | 13.5 <i>[0.53]</i> |  |  |
| SAE B                     |         | 101.6 <i>[4.00]</i> | 10.7 <i>[0.42]</i> | 41 [1.61] | 14.2 [0.56]        |  |  |
| SAE B-B                   | mm [in] | 101.6 <i>[4.00]</i> | 10.7 <i>[0.42]</i> | 46 [1.81] | 16.1 <i>[0.63]</i> |  |  |
| SAE C                     | [,,,,   | 127.0 [5.00]        | 14.3 [0.56]        | 56 [2.20] | 18.3 [0.72]        |  |  |
| SAE D                     |         | 152.4 [6.00]        | 14.3 [0.56]        | 75 [2.95] | 20.8 [0.82]        |  |  |
| SAE E 13 teeth            |         | 165.1 [6.50]        | 18.0 [0.71]        | 75 [2.95] | 20.8 [0.82]        |  |  |

#### Auxiliary pump mounting flange and shaft



Model Code

Operating Parameters

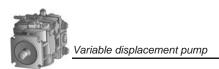
System design Para.

Installation Drawings

SIZE 055

SIZE 075

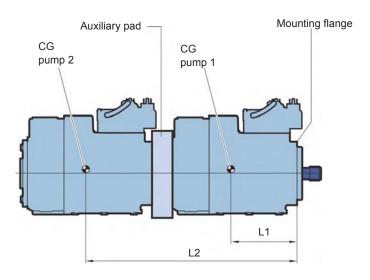
SIZE 100


SIZE 130

SIZE 180

SIZE 250

Options


23/09/2016 47



#### **Mounting Flange Loads**

Adding tandem mounted auxiliary pumps and/or subjecting pumps to high shock loads may result in excessive loading of the mounting flange. The overhung load moment for multiple pump mounting may be estimated as shown in the accompanying figure.

#### Overhung load example



#### **Estimating overhung load moments**

W = Weight of pump (kg)

L = Distance from mounting flange to pump center of gravity (m) (refer to pump installation drawings)

$$\begin{aligned} &M_R = G_R \; (W_1 L_1 + W_2 L_2 + \ldots + W_n L_n) \\ &M_S = G_S \; (W_1 L_1 + W_2 L_2 + \ldots + W_n L_n) \end{aligned}$$

Where:

M<sub>R</sub> = Rated load moment (N.m)

M<sub>S</sub> = Shock load moment (N.m)

 $G_R$  = Rated (vibratory) acceleration (G's) \* (m/sec<sup>2</sup>)

G<sub>S</sub> = Maximum shock acceleration (G's) \* (m/sec²)

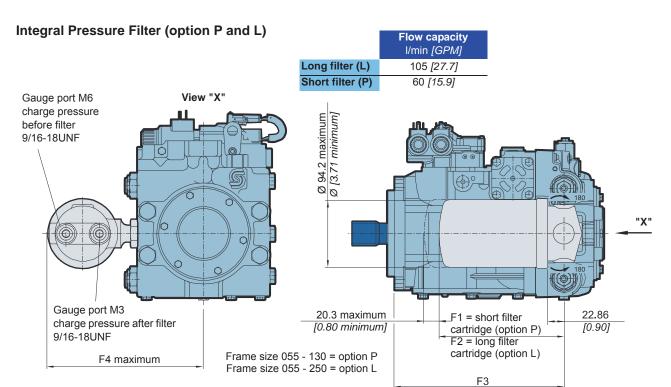
\* Calculations will be carried out by multiplying the gravity (g = 9.81 m/sec²) with a given factor. This factor depends on the application.

Allowable overhung load moment values are shown in the accompanying table. Exceeding these values requires additional pump support.

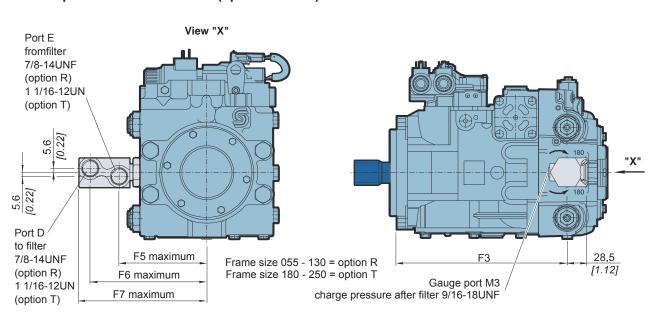
| Allowable overhung load moments |                                             |                                                  |  |  |  |  |
|---------------------------------|---------------------------------------------|--------------------------------------------------|--|--|--|--|
| Frame size                      | Rated moment (M <sub>R</sub> ) N.m [lbf.in] | Shock load moment (M <sub>S</sub> ) N.m [lbf.in] |  |  |  |  |
| 055                             | 1580 <i>[14 000]</i>                        | 5650 [50 000]                                    |  |  |  |  |
| 075                             | 1580 <i>[14 000]</i>                        | 5650 [50 000]                                    |  |  |  |  |
| 100                             | 1580 <i>[14 000]</i>                        | 5650 [50 000]                                    |  |  |  |  |
| 130                             | 3160 <i>[28 000]</i>                        | 10 730 <i>[95 000]</i>                           |  |  |  |  |
| 180                             | 6070 [54 000]                               | 20 600 [182 000]                                 |  |  |  |  |
| 250                             | 6070 [54 000]                               | 20 600 [182 000]                                 |  |  |  |  |



Operating Parameters


System design Para.

Installation Drawings


075 SIZE

055

SIZE



#### Remote pressure - without filter (option R and T)



|            | Dimensions mm [in] |               |               |              |                     |                     |              |  |  |  |
|------------|--------------------|---------------|---------------|--------------|---------------------|---------------------|--------------|--|--|--|
| Frame size | F1                 | F2            | F3            | F4 max.      | F5 max.             | F6 max.             | F7 max.      |  |  |  |
| 055        | 174.5 [6.87]       | 262.6 [10.34] | 240.9 [8.19]  | 209.6 [8.25] | 114.3 <i>[4.50]</i> | 154.3 [6.07]        | 169.6 [6.68] |  |  |  |
| 075        | 174.5 [6.87]       | 262.6 [10.34] | 253.2 [9.67]  | 214.4 [8.44] | 119.1 <i>[4.69]</i> | 159.1 <i>[6.26]</i> | 174.4 [6.86] |  |  |  |
| 100        | 174.5 [6.87]       | 262.6 [10.34] | 280.7 [11.05] | 223.0 [8.78] | 127.7 [5.03]        | 167.7 [6.60]        | 183.0 [7.20] |  |  |  |
| 130        | 174.5 [6.87]       | 262.6 [10.34] | 299.9 [11.81] | 223.0 [9.17] | 137.7 [5.03]        | 177.7 [6.99]        | 193.0 [7.60] |  |  |  |
| 180        | -                  | -             | 327.8 [12.90] | -            | 182.0 [7.16]        | 236.8 [9.32]        | 259.2 [10.2] |  |  |  |
| 250        | -                  | -             | 342.8 [13.49] | -            | 182.0 [7.16]        | 236.8 [9.32]        | 259.2 [10.2] |  |  |  |

23/09/2016





Model Code

Operating Parameters

System C design Para.

Installation Drawings

SIZE 055

SIZE 075

51

**SIZE 250** 

23/09/2016



Poclain Hydraulics reserves the right to make any modifications it deems necessary to the products described in this document without prior notification. The information contained in this document must be confirmed by Poclain Hydraulics before any order is submitted.

Illustrations are not binding.

The Poclain Hydraulics brand is the property of Poclain Hydraulics S.A.



