

Hydraulic Valves

Poclain Hydraulics specializes in the design, manufacture and marketing of hydrostatic transmissions.

Our success is based on a wide range of products, our high quality standards and a strong culture of innovation.

4 Open Loop Valves

- Check Valves
- Pressure Control Valves
- Flow Control Valves
- Directional Control Valves
- Compact connecting components

Poclain Hydraulics Open Loop Valves are designed and optimized for hydraulic systems with pressure range up to 350 bar. This product range can easily be used in closed loop systems as well

10 Brake Valves

- Brake Actuators
- Power Brake Valves
- Tractors & Trailers Brake Valves
- Accumulator charging Valves

Poclain Hydraulics has developed braking system to both enhance hydrostatic braking performance and add synchronized control for combinations of both hydrostatic and mechanical brake systems on a single vehicle. This product range is designed to be easily integated to an existing braking circuit.

Hydraulic Valves

12 Power transmission Valves

- Traction Control Valves
- Flow Control Valves
- Freewheeling Valves
- Exchange Valves

Designed for hydrostatic transmission, these valves are sized to operate at high pressure & high flow. They are optimized to work with Poclain Hydraulics hydrostatic transmission.

14 Customized block Valves

Power Transmission Valves & Open Loop Valves can be integrated into blocks meeting any customer's needs.

Check Valves VP-NV

A large connecting and modular offer.

	Size	(NG)	Operating pressure	Flow rate	Connecting	Hydraulic schematics
	6	10	bar [PSI]	l/min [GPM]	dimensions*	Trydraule selectiates
Direct operated	valves	5				
VP-NV	•	•	350 <i>[5 076]</i>	100 [26.4]	СЕТОР	B _D
VP-NOV	•	•	350 <i>[5 076]</i>	100 [26.4]	CETOP	200 AV PA TV
Pilot operated va	alves					
NOV-6D			350 <i>[5 076]</i>	60 [15.9]	in line Gas, UNF	A2 B2 1 1 1 1 1 1 1 1 1
NOV-6E			350 <i>[5 076]</i>	60 [15.9]	in line Gas, UNF	Z A
Counterbalance	pilote	ed val	ves			
BZV	•		270 [3 916]	60 [15.9]	in line Metric, Gas, UNF	
VP-BZV	•		270 [3 916]	60 [15.9]	CETOP	By Ay Py Ty

Pressure Valves

Different mounting systems and direct/pilot operated valves.

	Size (NG)		G)	Operating pressure	Flow rate	Connecting	Operation	Hydraulic schematics	
	4	6	10	bar [PSI]	l/min [GPM]	dimensions*			
VVP		•	•	400 [5 802]	120 [31.7]	Cartridge in line	Direct		
VVB2			•	210 [3 046]	60 [15.9]	in line Metric, Gas, UNF	Direct		
VPLB15				Please consult our application engineers	70 [20]	in line Metric	Direct		
RT	•	•	•	350 <i>[5 076]</i>	90 [23.8]	Cartridge	Size 4: direct Sizes 6 to 10: pilot	T N	
VP-RT			•	350 <i>[5 076]</i>	90 [23.8]	СЕТОР	Pilot	B, A, VP-RT-EB P, T,	

Flow control Valves

2 or 3 ways valves, pressure compensated.

	Size	(NG)	Operating pressure	Flow rate	Connecting	Setting	Hydraulic
	6	10	bar [PSI]	I/min [GPM]	dimensions*	method	schematics
Throttle/che	ck val	ve					
VP-NDV	•	٠	350 <i>[5 076]</i>	100 [26.4]	CETOP	Manual	DV AV PV TV 1 1 1 1 1 1 1 1 1
Pressure com	pens	ated f	low control valves				
TVD	•		350 <i>[5 076]</i>	16 [4.2]	CETOP (ISO 6264)	Manual, Mechanical	A B
TVTC	•		350 <i>[5 076]</i>	50 [13.2]	in line Metric, Gas, UNF	Manual	B
TVTP Proportional	-		350 <i>[5 076]</i>	90 [23.8]	cardridge in line Gas, UNF	Electric, manual	1 2
Flow dividers	5						
DTP	•	•	350 <i>[5 076]</i>	70 [18.5]	in line Metric, Gas, UNF		
FD			450 <i>[6 526]</i>	300 [80]	in line Metric, Gas, UNF	Electric, hydraulic	

Directional control Valves

A wide range of spool types; low pressure drops; high reliability.

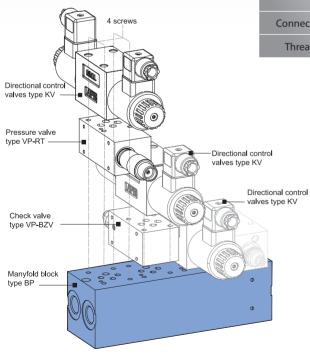
- Up to 250 bar [3 600 PSI] on the T port
- Up to 350 bar [5 077 PSI] on the working ports
- A large range of 6/2, 8/3 selector valves

		Size	(NG)		Operating pressure	Flow rate	Actuation	Modular Mounting*	Non modular in line	Hydraulic schematics
	4	6	10	16	bar [PSI]	l/min [GPM]		Mounting	connection	(examples)
2/2										
KV poppet		•			210 [3 046]	30 [7.9]	Electrical		Metric, Gas, UNF	, , , , , , , , , , , , , , , , , , ,
KVC	•				250 [3 626]	35 [9.2]	Mechanical		Metric, Gas, UNF	b a a
KVC-NV		•			250 [3 626]	40 [10.5]	Mechanical		Metric, Gas, UNF	,
3/2										
KVC	•				160 [2 320]	16 [4.2]	Electrical		Metric, Gas	A Nalle h
KVC			٠		350 [5 077]	100 [26.4]	Electrical		Metric, Gas, UNF	
4/2										
PKV		٠	٠		210 [3 046]	60 [15.8]	Automatic	CETOP		Â
PKV-T		٠			210 [3 046]	30 [7.9]	Automatic	CETOP		P
4/2 and 4/3										
KV		٠	٠		350 [5 077]	100 [26.4]	Mechanical	CETOP		a P T
KV		•			350 <i>[5 077]</i>	75 [19.8]	Electrical	CETOP		а <mark>Ма - А, в</mark> - Б Мь
KV			•		350 <i>[5 077]</i>	120 [31.6]	Electrical	CETOP		PIT
KV		•	•		350 <i>[5 077]</i>	130 [34.2]	Hydraulic	CETOP		
KV (3kO)		•			250 [3 626]	40 [10.5]	Electrical	СЕТОР		
KV				•	350 <i>[5 077]</i>	300 [79]	Electrical	СЕТОР		a Al IB
KVP proportional		•			350 <i>[5 077]</i>	30 [7.9]	Electrical	СЕТОР		
KVM		•			350 [5 077]	40 [10.5]	Electrical	Bankable	Metric, Gas, UNF	

	Size (NG)			Operating pressure	Flow rate	Actuation	Modular Mounting	Non modular in line	Hydraulic schematics	
	4	6	10	16	bar [PSI]	l/min [GPM]			connection*	(examples)
6/2										
KV		•	•		350 <i>[5 077]</i>	120 [31.6]	Mechanical		Metric, Gas, UNF	WC A D B
KV		•			350 [5 077]	50 [13.2]	Electrical		Metric, Gas, UNF	
KV			•		350 [5 077]	120 [31.6]	Electrical		Metric, Gas, UNF	CADB a 72 b P1 P2
KV-6K/2		•			250 [3 626]	50 [13.2]	Electrical		Metric, Gas, UNF	
KV 6/2				٠	350 <i>[5 077]</i>	250 [65.8]	Electrical		Gas, UNF	
KVH		-			315 [4 569]	50 [13.2]	Electrical	Bankable	Metric, Gas, UNF	CADB
KVH 6/2			٠		315 [4 569]	120 [31.6]	Electrical	Bankable	Metric, Gas, UNF	PI P2
6/3										MIT I BIBS A1AS
KV	•				210 [3 046]	6 [1.58]	Electrical		Metric, Gas	B A
8/3										CDEF
KV		•			250 [3 626]	50 [13.2]	Electrical		Metric, Gas, UNF	

6

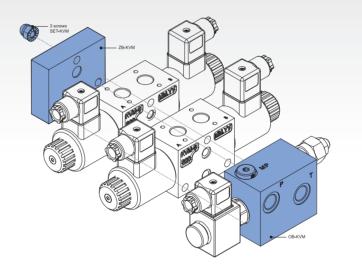
Compact connecting components

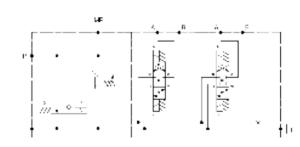

To eliminate the use of pipe connections according your space and the evolution of the valving system. The benefits are:

- Minimize the installing area and space.
- No expert skill is requered to assemble and futhermore, a supplement and a change to the circuit can easily and quickly be carried out.
- No more problems such as oil leaks, vibration and noise resulting from pipes and tubes.

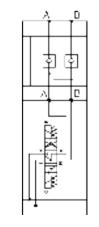
Compact mounting on manifold/subplate

		Manifold BP (max. 8 stations)	Subplates PP-KV (max.1 station)
	6	•	•
Size NG	10	•	•
	6 10 16 bar [PSI] I/min [GPM] dimensions		•
Max.pressure		350 [5 077]	350 [5 077]
Flow rate		120 [31.6]	300 [79.0]
Connecting dimensions		CETOP	CETOP
Thread conne	ections	Gas	Gas




Bankable mounting for KVM directional control valve range

			Operating pressure	Flow rate	Connecting dimensions*
		6	bar [PSI]	l/min [GPM]	diffiensions"
In	let block OB-KVM	-	350 <i>[5 077]</i>	40 [10.5]	Into pipeline
Ou	utlet block ZB-KVM	•	350 <i>[5 077]</i>	40 [10.5]	Into pipeline
Vertica	al Stacking STACK KVM	•	350 <i>[5 077]</i>	40 [10.5]	CETOP
S	crew set SET-KVM	•			



Vertical Stacking on KVM range thanks to STACK -KVM elements (= $\mathbf{0} + \mathbf{0} + \mathbf{0}$)

8

Brake Valves

- Max pressure: 210 bar [3000 PSI]
- Temperature from -20°c to 120°c [-4 to 248°F]
- Fluid: 10µm filtered mineral oil
- For single & dual circuit

VB 012

with floor

pedal

Brake actuators (Emergency, Parking & service Brake)

	Operating pressure	Brake type	Circuit	Valve type	
	bar [PSI]	brake type	Circuit	valve type	
VB 010	20 - 120 [290 - 1740]	Service brake	Single-circuit	Modulating	
VB 020	30 - 120 [435 - 1740]	Service brake	Dual-circuit	Modulating	
VB 012	20 - 120 [290 - 1740]	Service brake with	Single-circuit	Combined	
VB 022	30 - 120 [435 - 1740]	inching	Dual-circuit	Combined	
VB 002	10 - 120 [145 - 1740]	Emergency /	Single-circuit	Reverse modulating	
VB 00E	10 - 100 [145 - 1740]	Parking brake	Single-circuit	Reverse modulating	

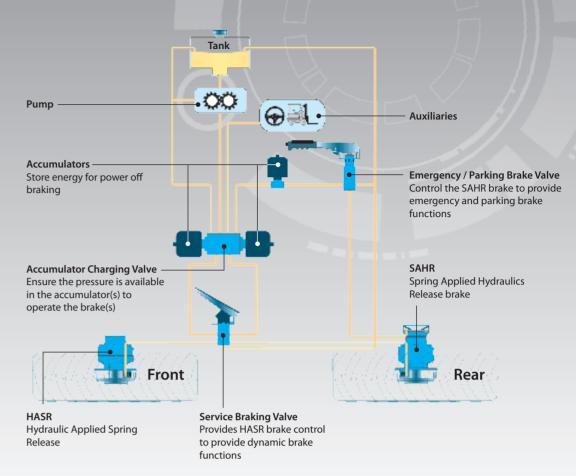
Power brake valves (Brake actuator + accumulator charging valve)

	Cut-in/cut-out	cut-out Operating pressure		Flow rate			
	pressure range	Operating pressure	Auxiliary	Accumulator			
VB110	bar [PSI]	bar [PSI]	l/min [GPM]	l/min [GPM]			
(single circuit)	110 / 130 [1595/1888]						
VB220	120 / 140 [1740/2031]						
(dual circuit)	135 / 160 [1958/2321]	30-120	45 - 120	2.75 - 15			
VB-22E	160 / 190 [2321/2756]	[435 - 1740]	[11.9 - 31.7]	[0.73 - 3.96]			
(dual circuit)	170 / 200 [2466/2901]						
	180 / 210 [2611/3046]						

VB 22E

Accumulator charging valves

	Cut-in/ cut-out	Flow rate			
	pressure range	Auxiliary	Accumulator		
	bar [PSI]	l/min [GPM]	l/min [GPM]		
VB100	110 / 130 [1595/1888]				
(single circuit)	120 / 140 [1740/2031]				
VB200	135 / 160 <i>[1958/2321]</i>	45 - 120	2.75 - 15		
(dual circuit)	160 / 190 [2321/2756]	[11.9 - 31.7]	[0.73 - 3.96]		
	170 / 200 [2466/2901]				
	180 / 210 [2611/3046]				



VB 200

The underlying concept of Poclain Hydraulics braking systems can be adapted to handle your specific braking requirements.

VB brake valves are widely used for heavy applications with pneumatic tyres, high speed and requiring high flow to brakes (when master cylinder is inefficient).

Tractors & trailers braking

Steering assist brake

(Single circuit)

Steering assist brake

(Dual circuit,

improved response

time)

Power brake valve

Max. operating pressure:

120 bar [1740 PSI]

Max. service pressure:

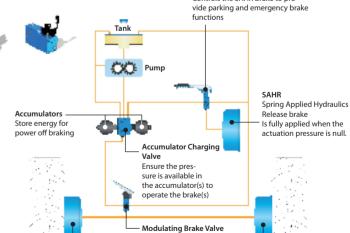
60 bar [870 PSI]

Max. operating pressure:

120 bar [1740 PSI]

Max. service pressure:

75 bar [1088 PSI]


Max. flow

auxiliaries: 120 l/min [32 GPM] accumulators: 15 l/min [4 GPM]

VB-0B0

VB-0D0

Trailer

Tractor

VB-0B0

VB-0D0

VFR-200

VFR-0HX	Service brake hydraulically piloted	Flow
VFR-0EX	Service brake electronically piloted	brakes: 50 l/min [13 GPM] auxiliaries: 200 l/min [53 GPM]

VFR-0EX

Provides HASR brakes control to provide dynamic brake functions

Reverse Modulating Brake Valve Controls the SAHR brake to pro-

Anti-slipping systems Valves

To control wheel slippage during operating of hydrostatic self-propelled machinery in rough terrain conditions, Poclain Hydraulics has developed **2 solutions** that offer an high vehicle gradeability by:

- Synchronization of wheel speed to avoid soil damage
- Optimized machine performance and stability
- Reduced fuel consumption
- Increased tire life (reduced wear)

1/ TwinLock™ valves

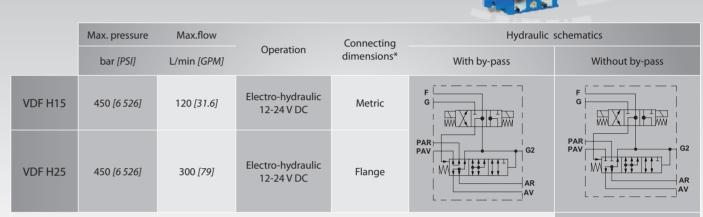
Twin Lock™ is a unique proactive hydraulic traction control, by providing flow division while automatically transferring torque to the wheels with the greatest ground adhesion. And since it reduces or eliminates the need for flow dividers, it dramatically reduces the heat generation and horsepower loss of conventional transmission systems.

		Max. pressure	Max.flow		Connecting	Hydraulic	
		bar [PSI]	L/min [GPM]	Operation	dimensions*	schematics	
	VDP	450 <i>[6 526]</i>	26 - 50 [7 - 13]	Hydraulic Mechanical	Metric	T T - P X - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Nev	g Tl PR-TL-SV	450 <i>[6 526]</i>	30 - 50 [7.9 - 13]	Hydraulic Electro-hydraulic	Metric	HPB HPA M M TR	

2/ SmartDrive™ Off Road valves

SmartDrive™ Off Road is an electronically managed traction control, which operates to restrict flow only when slippage is detected, by using normally wheel speed sensors and open proportional valves. Entirely programmable, the system easily accommodates varying motor displacements and vehicle steering geometry to offer optimal performance. SmartDrive™ Off Road can be installed by OEMs on production vehicles or offered as an after sale option (Poclain Hydraulics motors just need to be "speed sensor ready").

	Voltage	Max. pressure	Max.flow	Connecting	Hydraulic schematics	
	voitage	bar [PSI]	L/min [GPM]	dimensions*		
VMA In-line model VMA Flanged model	12 V DC or 24 V DC	450 [<i>6 526</i>]	20 <i>[5.2]</i> or 50 <i>[13.2]</i>	Metric	E C C C C C C C C C C C C C C C C C C C	


Hydraulic Assistance Valves

Free wheeling valves

Cam lobe motor technology is ideally suited to assist drive requirements. The free-wheeling capability of Poclain Hydraulics motors enables high performance when engaged yet will not induce a drag on the main transmission when disengaged.

On motor, connects the ports A and R (or L and R on motor 1C) to tank and allows the pistons to return in cylinder-blocks and the motor to turn in freewheeling.

It protects the motor from pressure spikes in the casing.

VDF H25 with remote pilot valve

Exchange Valves

Very compact valve to bleed hot oil from the low pressure side of a hydrostatic transmission circuit to be cooled, filtered or used as a source of oil for flushing other pump and motor case.

	Max. pressure	Exchange flow	Connecting	Hydraulic	
	bar [PSI] I/min [GPM]		dimensions*	schematics	
New VE 10	450 <i>[6 526]</i>	10 [2.64]			
New VE30	450 <i>[6 526]</i>	30 [7.9]	in line Metric, Gas, UNF		
New VE60	450 <i>[6 526]</i>	60 [15.9]		MA MB	

Electrical Components

KRSS

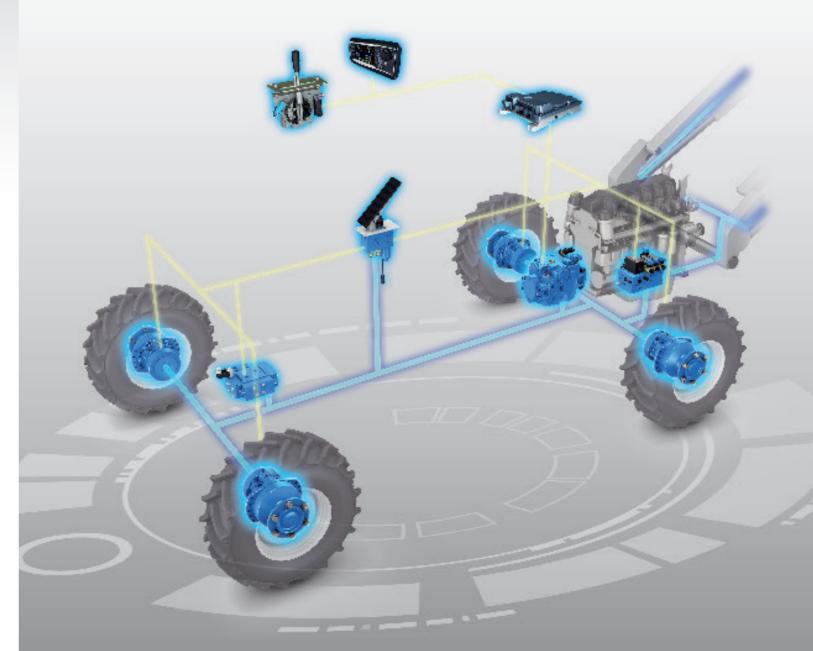
TS VP-TS

	Size	Switching capacity	Operating pressure	Connecting dimensions	Electrical connector
Pressure switch TS, VP-TS	4		400 bar 5 082 PSI	Onto a subplate, into pipelines, vertical stacking, DIN 24340, ISO 4401	Plug-in connector
Control lever KRSS		5A / 12V		Inner thread, M10	FASTON A6, 3-0, 8, EN 61210
	045/1	26 W	250 bar 3 626 PSI	M19x1 Into valve body	- Plug-in to ISO 4400 - AMP junior timer - Deutsch connector
MR Solenoids for directional	045	29 W			
control valves	060	45 W		M27x1,5 - Into valve body	
Amplifier for proportional solenoids R59		1,8A 30W			Plug-in to ISO 4400

Customized block Valves

Our skills and tools to design the right solution for you:

- Strong R&D and engineering team with long term experiences in designing the solution to customer requests for wide range of applications
- Innovative compact design
- Short response time from request to offer, samples and series deliveries
- Advanced CAD/CAM tools for design and manufacturing
- Modern and efficient machinery and equipment for series production



Poclain Hydraulics it is also

Hydraulic Systems

Our world leading expertise enables us to provide customers with innovative solutions including hydraulic motors, pumps, valves and electronics that enhance vehicle performance, energy savings and safety.

Motors • Pumps • Valves • Electronics

www.poclain-hydraulics.com

Motors

Pumps

Valves

Electronics

